ट्रांजिस्टर-ट्रांजिस्टर तर्क: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 120: Line 120:
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Transistor-transistor logic}}[[Category: डिजिटल इलेक्ट्रॉनिक्स]] [[Category: तर्क परिवार]]
{{DEFAULTSORT:Transistor-transistor logic}}


 
[[Category:All articles with bare URLs for citations]]
 
[[Category:Articles with PDF format bare URLs for citations]]
[[Category: Machine Translated Page]]
[[Category:Articles with bare URLs for citations from March 2023]]
[[Category:Created On 14/03/2023]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Transistor-transistor logic]]
[[Category:Vigyan Ready]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Collapse templates|Transistor-transistor logic]]
[[Category:Commons category link is locally defined|Transistor-transistor logic]]
[[Category:Created On 14/03/2023|Transistor-transistor logic]]
[[Category:Lua-based templates|Transistor-transistor logic]]
[[Category:Machine Translated Page|Transistor-transistor logic]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Transistor-transistor logic]]
[[Category:Pages with script errors|Transistor-transistor logic]]
[[Category:Sidebars with styles needing conversion|Transistor-transistor logic]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Transistor-transistor logic]]
[[Category:Templates generating microformats|Transistor-transistor logic]]
[[Category:Templates that add a tracking category|Transistor-transistor logic]]
[[Category:Templates that are not mobile friendly|Transistor-transistor logic]]
[[Category:Templates that generate short descriptions|Transistor-transistor logic]]
[[Category:Templates using TemplateData|Transistor-transistor logic]]
[[Category:Wikipedia metatemplates|Transistor-transistor logic]]
[[Category:डिजिटल इलेक्ट्रॉनिक्स|Transistor-transistor logic]]
[[Category:तर्क परिवार|Transistor-transistor logic]]

Latest revision as of 11:50, 30 June 2023

ट्रांजिस्टर-ट्रांजिस्टर लॉजिक (टीटीएल) द्विध्रुवी जंक्शन ट्रांजिस्टर से निर्मित एक तर्क परिवार होता है। इसका नाम दर्शाता है कि ट्रांजिस्टर पहले के प्रतिरोध-ट्रांजिस्टर लॉजिक (आरटीएल) और डायोड-ट्रांजिस्टर लॉजिक (डीटीएल) के विपरीत लॉजिक फ़ंक्शन (पहला ट्रांजिस्टर) और एम्पलीफाइंग फ़ंक्शन (दूसरा ट्रांजिस्टर) दोनों का प्रदर्शन करते हैं।

टीटीएल एकीकृत परिपथ (आईसी) का उपयोग व्यापक रूप से कंप्यूटर, औद्योगिक नियंत्रण, परीक्षण उपकरण, इंस्ट्रूमेंटेशन, उपभोक्ता इलेक्ट्रॉनिक्स और सिंथेसाइज़र जैसे अनुप्रयोगों में किया जाता था।[1] सिल्वेनिया इलेक्ट्रिक उत्पाद द्वारा 1963 में एकीकृत परिपथ फॉर्म में उनकी प्रारंभ होने के बाद, टीटीएल ने एकीकृत परिपथ को कई सेमीकंडक्टर कंपनियों द्वारा निर्मित किया गया था। टेक्सस उपकरण की 7400 श्रृंखला विशेष रूप से लोकप्रिय हुई थी। इस प्रकार टीटीएल निर्माताओं ने लॉजिक गेट, फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स), काउंटर और अन्य परिपथ की एक विस्तृत श्रृंखला को प्रस्तुत किया था। मूल टीटीएल परिपथ डिजाइन के बदलाव ने डिजाइन अनुकूलन की अनुमति देने के लिए उच्च गति या कम बिजली अपव्यय को प्रस्तुत किया था। टीटीएल उपकरण मूल रूप से सिरेमिक और प्लास्टिक दोहरे इन-लाइन पैकेज और फ्लैट-पैक फॉर्म में बनाए गए थे। कुछ टीटीएल चिप्स अब भूतल पर्वत प्रौद्योगिकी पैकेज में भी बनाए जाते हैं।

टीटीएल कंप्यूटर और अन्य डिजिटल इलेक्ट्रॉनिक्स की नींव बन गया था। बड़े पैमाने पर एकीकरण (वीएलएसआई) सीएमओएस एकीकृत परिपथ माइक्रोप्रोसेसर के बाद भी मल्टीपल-चिप प्रोसेसर अप्रचलित हो गए थे, टीटीएल उपकरणों को वर्तमान में भी अधिक सघन एकीकृत घटकों के बीच गोंद तर्क इंटरफेसिंग के रूप में इसका व्यापक उपयोग किया जाता है।

इतिहास

1979 के आसपास टीटीएल चिप्स से निर्मित एक वास्तविक समय की एक घड़ी

टीटीएल का आविष्कार 1961 में टीआरडब्लू इंक के जेम्स एल बुई द्वारा किया गया था, जिसने विशेष रूप से नई विकासशील एकीकृत परिपथ डिजाइन तकनीक के अनुकूल टीटीएल को निर्मित किया था। इस प्रकार टीटीएल का मूल नाम ट्रांजिस्टर-युग्मित ट्रांजिस्टर लॉजिक (टीसीटीएल) पड़ा था।[2] सिल्वेनिया यूनिवर्सल हाई-लेवल लॉजिक फैमिली (एसयूएचएल) नामक 1963 में सिल्वेनिया द्वारा पहला वाणिज्यिक एकीकृत-परिपथ टीटीएल उपकरण को निर्मित किया था।[3] सिल्वेनिया भागों का उपयोग फीनिक्स मिसाइल के नियंत्रण में किया गया था।[3]जब टेक्सास इंस्ट्रूमेंट्स ने 1964 में मिलिट्री टेम्परेचर रेंज के साथ एकीकृत-परिपथ की 5400 सीरीज और 1966 में एक संकरी रेंज और सस्ते प्लास्टिक पैकेज के साथ निर्दिष्ट 7400 सीरीज को प्रारंभ किया था तब टीटीएल इलेक्ट्रॉनिक सिस्टम डिजाइनरों के बीच अत्यधिक लोकप्रिय हो गया था। [4]

इस प्रकार टेक्सास इंस्ट्रूमेंट्स 7400 परिवार के लिए एक उद्योग मानक बन गया था। संगत भागों का निर्माण मोटोरोला, एएमडी, फेयरचाइल्ड सेमीकंडक्टर, इंटेल, इंटरसिल, सिग्नेटिक्स, मुलर्ड, सीमेंस, एसजीएस-थॉमसन, आरआईएफए (निर्माता), राष्ट्रीय सेमीकंडक्टर के द्वारा[5][6] और कई अन्य कंपनियां, यहां तक ​​कि पूर्वी ब्लॉक द्वारा भी (सोवियत संघ, जीडीआर, पोलैंड, चेकोस्लोवाकिया, हंगरी, रोमानिया -विस्तृत सूचना के लिए 7400 श्रृंखला को देखें ) किया गया था। न मात्र दूसरों ने संगत टीटीएल भागों को बनाया था, जबकि संगत भागों को कई अन्य परिपथ तकनीकों का उपयोग करके भी बनाया गया था। कम से कम एक निर्माता, आईबीएम ने अपने स्वयं के उपयोग के लिए गैर-संगत टीटीएल परिपथ का उत्पादन किया था; इस प्रकार आईबीएम ने आईबीएम सिस्टम/38, आईबीएम 4300 और आईबीएम 3081 में प्रौद्योगिकी का उपयोग किया था।[7] लगभग दो दशकों में गति और बिजली की खपत में क्रमिक सुधार के साथ टीटीएल शब्द बीजेटी तर्क की कई क्रमिक पीढ़ियों पर लागू होता है। सर्वप्रथम हाल ही में प्रस्तुत किया गया परिवार 74Fxx आज भी (2019 तक) बेचा जाता है, और 90 के वर्षों के अंत में इसका व्यापक रूप से उपयोग किया जाता था। 74एएस /एएलएस एडवांस्ड शॉटकी को 1985 में प्रस्तुत किया गया था।[8] 2008 तक, टेक्सास इंस्ट्रूमेंट्स कई अप्रचलित प्रौद्योगिकी परिवारों में अधिक सामान्य-उद्देश्य वाले चिप्स की आपूर्ति करना जारी रखता था, यद्यपि वें बढ़ी हुई कीमतों पर उपलब्ध होती थी। सामान्यतः, टीटीएल चिप्स प्रत्येक में कुछ सौ ट्रांजिस्टर से अधिक नहीं होते हैं। एक पैकेज के भीतर कार्य सामान्यतः कुछ लॉजिक गेट्स से लेकर माइक्रोप्रोसेसर बिट टुकड़ा तक होते हैं। टीटीएल इसलिए भी महत्वपूर्ण हो गया था क्योंकि इसकी कम लागत ने डिजिटल तकनीकों को आर्थिक रूप से उन कार्यों के लिए व्यावहारिक बना दिया था जो पहले एनालॉग विधियों द्वारा किए जाते थे।[9] पहले निजी कंप्यूटर के पूर्वज केनबाक -1 ने माइक्रोप्रोसेसर चिप के अतिरिक्त अपनी सेंट्रल प्रोसेसिंग यूनिट के लिए टीटीएल का उपयोग किया था, जो 1971 में उपलब्ध नहीं था।[10] 1970 से डाटापॉइंट 2200 ने अपने सीपीयू के लिए टीटीएल घटकों का उपयोग किया था और इंटेल 8008 और बाद में x86 निर्देश सेट का आधार था।[11] 1973 के ज़ेरॉक्स ऑल्टो और 1981 के ज़ेरॉक्स स्टार वर्कस्टेशन, जिसने ग्राफिकल यूज़र इंटरफ़ेस प्रस्तुत किया था, क्रमशः अंकगणितीय तर्क इकाइयों (एएलयू) और बिटस्लाइस के स्तर पर एकीकृत टीटीएल परिपथ का उपयोग करती थी। 1990 के दशक में अधिकांश कंप्यूटर बड़े चिप्स के बीच टीटीएल-संगत ग्लू लॉजिक का उपयोग करते थे। प्रोग्रामेबल लॉजिक डिवाइस के आगमन तक, विकास के तहत प्रोटोटाइप और हार्डवेयर अनुकरण माइक्रो आर्किटेक्चर के लिए असतत द्विध्रुवी तर्क का उपयोग किया गया था।

कार्यान्वयन

मौलिक टीटीएल गेट

सरल आउटपुट चरण (सरलीकृत) के साथ दो-इनपुट टीटीएल एनएएनडी गेट

टीटीएल इनपुट द्विध्रुवी ट्रांजिस्टर के उत्सर्जक होते हैं। एनएएनडी इनपुट के मामले में, इनपुट बहु-उत्सर्जक ट्रांजिस्टर के उत्सर्जक होते हैं, कार्यात्मक रूप से कई ट्रांजिस्टर के समतुल्य होते हैं जहां आधार और कलेक्टर से एक साथ बंधे होते हैं।[12] आउटपुट को एक सामान्य एमिटर एम्पलीफायर द्वारा बफर किया जाता है।

दोनों इनपुट तार्किक होते हैं। जब सभी इनपुट उच्च वोल्टेज पर होते हैं, तो मल्टीपल-एमिटर ट्रांजिस्टर के बेस-एमिटर जंक्शन रिवर्स-बायस्ड होते हैं। डीटीएल के विपरीत, प्रत्येक इनपुट द्वारा एक छोटा "कलेक्टर" धारा (लगभग 10µA) खींचा जाता है। ऐसा इसलिए किया जाता है क्योंकि ट्रांजिस्टर बाइपोलर जंक्शन ट्रांजिस्टर ऑपरेशन के क्षेत्र में रिवर्स-एक्टिव मोड में होता है। सकारात्मक रेल से प्रतिरोधी के माध्यम से और एकाधिक उत्सर्जक ट्रांजिस्टर के आधार में लगभग निरंतर धारा प्रवाह होता है।[13] यह धारा आउटपुट ट्रांजिस्टर के बेस-एमिटर जंक्शन से होकर गुजरता है, जिससे यह आउटपुट वोल्टेज को कम (तार्किक शून्य) संचालित करने और खींचने की अनुमति देता है।

एक इनपुट तार्किक शून्य होता है। ध्यान दें कि मल्टीपल-एमिटर ट्रांजिस्टर का बेस-कलेक्टर जंक्शन और आउटपुट ट्रांजिस्टर का बेस-एमिटर जंक्शन रेसिस्टर के तल और जमीन के बीच श्रृंखला क्रम में उपस्थिति होते हैं। यदि एक इनपुट वोल्टेज शून्य हो जाता है, तो मल्टीपल-एमिटर ट्रांजिस्टर का संबंधित बेस-एमिटर जंक्शन इन दो जंक्शनों के समानांतर क्रम में होता है। धारा स्टीयरिंग नामक एक घटना का मतलब है कि जब अलग-अलग थ्रेशोल्ड वोल्टेज वाले दो वोल्टेज-स्थिर तत्व समानांतर में जुड़े होते हैं, तो धारा छोटे थ्रेशोल्ड वोल्टेज के साथ पथ से प्रवाहित होती है। अर्थात्, इस इनपुट से धारा प्रवाहित होता है और शून्य (कम) वोल्टेज स्रोत में जाता है। परिणाम स्वरूप, आउटपुट ट्रांजिस्टर के आधार के माध्यम से कोई धारा प्रवाहित नहीं करता है, जिससे इसका संचालन बंद हो जाता है और आउटपुट वोल्टेज उच्च (तार्किक एक) हो जाता है। संक्रमण के दौरान इनपुट ट्रांजिस्टर संक्षेप में अपने सक्रिय क्षेत्र में होता है; इसलिए यह आउटपुट ट्रांजिस्टर के आधार से एक बड़े धारा को दूर खींचता है और इस तरह इसके आधार का शीघ्र से निर्वहन कर देता है। यह डीटीएल पर टीटीएल का एक महत्वपूर्ण लाभ होता है जो डायोड इनपुट संरचना पर संक्रमण को गति देता है।[14] एक साधारण आउटपुट चरण के साथ टीटीएल का मुख्य नुकसान आउटपुट तार्किक "1" पर अपेक्षाकृत उच्च आउटपुट प्रतिरोध है जो आउटपुट कलेक्टर रेसिस्टर द्वारा पूरी तरह से निर्धारित होता है। यह उन इनपुटों की संख्या को सीमित करता है जिन्हें जोड़ा जा सकता है (प्रशंसक बाहर )। सरल आउटपुट चरण का कुछ लाभ उच्च वोल्टेज स्तर (वीCC तक) होता है और आउटपुट तार्किक "1" देता है जब आउटपुट लोड नहीं होता है।

ओपन कलेक्टर वायर्ड लॉजिक

एक सधारण भिन्नता आउटपुट ट्रांजिस्टर के संग्राहक प्रतिरोधी को छोड़ देती है, जिससे खुला कलेक्टर आउटपुट प्राप्त होता है। यह डिज़ाइनर को कई लॉजिक गेट्स के ओपन-कलेक्टर आउटपुट को एक साथ जोड़कर और एक बाहरी पुल-अप रोकनेवाला प्रदान करके वायर्ड लॉजिक कनेक्शन बनाने की अनुमति देता है। यदि कोई लॉजिक गेट लॉजिक लो (ट्रांजिस्टर कंडक्टिंग) हो जाता है, तो संयुक्त आउटपुट कम प्राप्त होता है। इस प्रकार के गेट के उदाहरण 7401[15] और 7403[16] शृंखला में उपस्थित है। कुछ फाटकों के ओपन-कलेक्टर आउटपुट में उच्च अधिकतम वोल्टेज होता है, जैसे कि 7426 के लिए 15 वी ,[17] गैर-टीटीएल लोड चलाते समय उपयोगी होता है।

"टोटेम-पोल" आउटपुट चरण के साथ टीटीएल

टोटेम-पोल आउटपुट चरण के साथ मानक टीटीएल एनएएनडी , 7400 में चार में से एक होता है।

सरल आउटपुट चरण के उच्च आउटपुट प्रतिरोध के साथ समस्या को हल करने के लिए दूसरा योजनाबद्ध इसमें एक टोटेम-पोल को (पुश-पुल) आउटपुट में जोड़ता है। इसमें दो एन-पी-एन ट्रांजिस्टर वी3और वी4 "लिफ्टिंग" डायोड वी5 और धारा-सीमित प्रतिरोधी आर3 (दाईं ओर की आकृति देखे ) सम्मलित होते है। यह ऊपर के समान धारा स्टीयरिंग को लागू करके संचालित होता है।

जब वी2 बंद होता है, तो वी4 भी बंद होता है और वी3 उच्च आउटपुट वोल्टेज (तार्किक "1") का उत्पादन करने वाले सधारण कलेक्टर के रूप में सक्रिय क्षेत्र में काम करता है।

जब वी2 चालू होता है, तो यह वी4 को सक्रिय करता है, आउटपुट में कम वोल्टेज (तार्किक "0") चलाता है। पुनः एक धारा-स्टीयरिंग प्रभाव होता है: जो वी2 के सी-ई जंक्शन और वी4 के बी-ई जंक्शन का श्रृंखला सयोंजन वी3 बी-ई, वी5 एनोड-कैथोड जंक्शन और वी4 सी-ई की श्रृंखला के समानांतर में होते है। दूसरी श्रृंखला के संयोजन में उच्च थ्रेशोल्ड वोल्टेज होते है, इसलिए इसके माध्यम से कोई धारा प्रवाहित नहीं होती है, अर्थात वी3 बेस धारा वंचित होते है। ट्रांजिस्टर वी3 "बंद" हो जाता है और यह आउटपुट पर प्रभाव नहीं डालता है।

संक्रमण के मध्य में प्रतिरोधक आर3 श्रृंखला से जुड़े ट्रांजिस्टर वी3, डायोड वी5 और ट्रांजिस्टर वी4 के माध्यम से सीधे प्रवाहित होने वाली धारा को सीमित करता है जो सभी संचालित होते हैं। इस प्रकार यह आउटपुट तार्किक 1 और ग्राउंड से शॉर्ट कनेक्शन के में आउटपुट धारा को भी सीमित करता है। इस प्रकार आउटपुट चरण से पुल-अप और पुल-डाउन प्रतिरोधों को हटाकर बिजली की खपत को आनुपातिक रूप से प्रभावित किए बिना गेट की ताकत बढ़ाई जा सकती है।[18][19] टोटेम-पोल आउटपुट चरण के साथ टीटीएल का मुख्य लाभ आउटपुट तार्किक 1 पर कम आउटपुट प्रतिरोध होता है। यह उत्सर्जक अनुयायी के रूप में सक्रिय क्षेत्र में संचालित ऊपरी आउटपुट को ट्रांजिस्टर वी 3 द्वारा निर्धारित किया जाता है। प्रतिरोधक आर 3 आउटपुट प्रतिरोध में वृद्धि नहीं करता है क्योंकि यह वी3 कलेक्टर में जुड़ा हुआ होता है और इसके प्रभाव को नकारात्मक प्रतिक्रिया से क्षतिपूर्ति की जाती है। टोटेम-पोल आउटपुट चरण का एक नुकसान आउटपुट तार्किक "1" (भले ही आउटपुट अनलोड किया गया हो) का घटा हुआ वोल्टेज स्तर (3.5 वी से अधिक नहीं) होता है। इसी कमी के कारण वी3 बेस-एमिटर और वी5 एनोड-कैथोड जंक्शनों में वोल्टेज की गिरावट होती है।

इंटरफेसिंग विचार

डीटीएल की तरह, टीटीएल एक धारा-सिंकिंग लॉजिक होता है, क्योंकि धारा को इनपुट से खींचा जाता है जिससे उन्हें लॉजिक 0 वोल्टेज स्तर पर लाया जाता है। वोल्टेज को 0.4 वोल्ट से अधिक बढ़ने की अनुमति नहीं देते हुए ड्राइविंग चरण को मानक टीटीएल इनपुट से 1.6 एमए(मिली अम्पीयर) तक अवशोषित करना होता है ।[20] 10 मानक इनपुट चरणों (10 का फैनआउट) तक ड्राइव करते समय सबसे सधारण टीटीएल गेट्स के आउटपुट चरण को सही ढंग से कार्य करने के लिए निर्दिष्ट किया जाता है। तार्किक "1" प्रदान करने के लिए कभी-कभी टीटीएल इनपुट को अस्थाई रूप से छोड़ दिया जाता है, चूंकि इस उपयोग की अनुशंसा नहीं की जाती है।[21] मानक टीटीएल परिपथ 5 वाल्ट बिजली की आपूर्ति के साथ काम करते हैं। एक टीटीएल इनपुट सिग्नल को ग्राउंड टर्मिनल के संबंध में 0 वी और 0.8 वी के बीच होने पर कम और 2 वी और वीCC (5 वी ) के बीच होने पर उच्च के रूप में परिभाषित किया जाता है ,[22][23] और अगर टीटीएल गेट के इनपुट में 0.8 वी और 2.0 वी के बीच वोल्टेज सिग्नल भेजा जाता है, तो गेट से कोई निश्चित प्रतिक्रिया नहीं प्राप्त होती है और इसलिए इसे अनिश्चित माना जाता है (त्रुटिहीन तर्क स्तर उप-प्रकारों और तापमान के बीच थोड़ा भिन्न होता है)। इस प्रकार टीटीएल आउटपुट सामान्यतः निम्न के लिए 0.0 वी और 0.4 वी के बीच और 2.4 वी और वीCC के बीच की संकीर्ण सीमा तक सीमित होते हैं उच्च के लिए, कम से कम 0.4 वी का शोर (इलेक्ट्रॉनिक्स) प्रदान करता है। इस प्रकार टीटीएल स्तरों का मानकीकरण इतना सर्वव्यापी होता है कि जटिल परिपथ बोर्डों में अक्सर टीटीएल चिप्स होते हैं जो उपलब्धता और लागत के लिए चुने गए कई अलग-अलग निर्माताओं द्वारा बनाए जाते हैं, इस प्रकार अनुकूलता का आश्वासन दिया जाता है। अलग-अलग लगातार दिनों या हफ्तों में एक ही असेंबली लाइन से दो परिपथ बोर्ड इकाइयों में बोर्ड पर समान स्थिति में चिप्स के ब्रांडों का एक अलग मिश्रण हो सकता है; मूल घटकों की तुलना में वर्षों बाद निर्मित चिप्स के साथ नवीनीकरण संभव होता है। उपयोगी व्यापक सीमाओं के भीतर, लॉजिक गेट्स को विद्युत सीमाओं की चिंता किए बिना आदर्श बूलियन उपकरणों के रूप में माना जा सकता है। इस प्रकार चालक चरण के कम आउटपुट प्रतिबाधा के कारण 0.4वी शोर मार्जिन पर्याप्त होता है, अर्थात, आउटपुट पर आरोपित बड़ी मात्रा में शोर शक्ति को एक अपरिभाषित क्षेत्र में इनपुट ड्राइव करने के लिए आवश्यक होता है।

कुछ स्थितियों में (उदाहरण के लिए, जब टीटीएल लॉजिक गेट के आउटपुट को सीएमओएस गेट के इनपुट को चलाने के लिए उपयोग करने की आवश्यकता होती है), आउटपुट तार्किक "1" पर टोटेम-पोल आउटपुट चरण के वोल्टेज स्तर को वीCC के करीब बढ़ाया जा सकता है। वी4 संग्राहक और धनात्मक रेल के बीच एक बाहरी अवरोधक को जोड़कर रखता है। यह पुल-अप रोकनेवाला वी5 कैथोड और डायोड को काट देता है।[24] चूकीं, यह तकनीक वास्तव में परिष्कृत टोटेम-पोल आउटपुट को एक उच्च स्तर (बाहरी प्रतिरोधी द्वारा निर्धारित) चलाते समय महत्वपूर्ण आउटपुट प्रतिरोध वाले सरल आउटपुट चरण में परिवर्तित करती है।

पैकेजिंग

1963-1990 की अवधि के अधिकांश एकीकृत परिपथों की तरह, वाणिज्यिक टीटीएल उपकरणों को सामान्यतः दोहरे इन-लाइन पैकेज (डीआईपी) में पैक किया जाता है, सामान्यतः 14 से 24 पिन के साथ,[25] थ्रू-होल या सॉकेट माउंटिंग के लिए किया जाता है। एपॉक्सी प्लास्टिक (पीडीआईपी) पैकेज सामान्यतः वाणिज्यिक तापमान रेंज घटकों के लिए उपयोग किए जाते थे, जबकि सिरेमिक पैकेज (सीडीआईपी) सैन्य तापमान रेंज भागों के लिए उपयोग किए जाते थे।

बीम लेड तकनीक बीम-लेड चिप डाइस पैकेज के बिना हाइब्रिड एकीकृत परिपथ के रूप में बड़े सरणियों में असेंबली के लिए बनाए गए थे। सैन्य और एयरोस्पेस अनुप्रयोगों के लिए भागों को फ्लैटपैक (इलेक्ट्रॉनिक्स) में पैक किया गया था, जो सरफेस-माउंट पैकेज का एक रूप था, जिसमें मुद्रित परिपथ बोर्डों को वेल्डिंग या टांका लगाने के लिए प्रयोग किया जाता था । वर्तमान में कई टीटीएल-संगत उपकरण सरफेस-माउंट पैकेज के रूप में उपलब्ध हैं, जो थ्रू-होल पैकेज की तुलना में व्यापक श्रेणी में उपलब्ध होते हैं।

टीटीएल द्विध्रुवी एकीकृत परिपथ के लिए विशेष रूप से उपयुक्त होता है क्योंकि एक गेट के लिए अतिरिक्त इनपुट इनपुट ट्रांजिस्टर के एक साझा आधार क्षेत्र पर मात्र अतिरिक्त उत्सर्जकों की आवश्यकता होती है। यदि व्यक्तिगत रूप से पैक किए गए ट्रांजिस्टर का उपयोग किया जाता है, तो सभी ट्रांजिस्टर की लागत ऐसी इनपुट संरचना का उपयोग करने से हतोत्साहित होती है। परंतु एक एकीकृत परिपथ में, अतिरिक्त गेट इनपुट के लिए अतिरिक्त उत्सर्जक मात्र एक छोटा सा क्षेत्र जोड़ते हैं।

कम से कम एक कंप्यूटर निर्माता, आईबीएम ने टीटीएल के साथ अपना खुद का फ्लिप चिप एकीकृत परिपथ बनाया गया था। इन चिप्स को सिरेमिक मल्टी-चिप मॉड्यूल पर लगाया गया था।[26][27]

अन्य तर्क परिवारों के साथ तुलना

टीटीएल डिवाइस सुविधा से समतुल्य सीएमओएस उपकरणों की तुलना में काफी अधिक बिजली की खपत करते हैं, परंतु बिजली की खपत घड़ी की गति के साथ सीएमओएस उपकरणों की तरह तेजी से नहीं बढ़ती है।[28] समकालीन उत्सर्जक युग्मित तर्क परिपथ की तुलना में, टीटीएल कम शक्ति का उपयोग करता है और इसके डिजाइन नियम आसान होते हैं परंतु यह काफी धीमा होता है। इस प्रकार डिजाइनर सर्वश्रेष्ठ समग्र प्रदर्शन और अर्थव्यवस्था प्राप्त करने के लिए एक ही प्रणाली में ईसीएल और टीटीएल उपकरणों को जोड़ सकते हैं, परंतु दो तर्क परिवारों के बीच स्तर-स्थानांतरण उपकरणों की आवश्यकता होती है। प्रारंभिक सीएमओएस उपकरणों की तुलना में टीटीएल स्थिरविद्युत निर्वाह से होने वाली क्षति के प्रति कम संवेदनशील होते है।

टीटीएल उपकरणों की आउटपुट संरचना के कारण, आउटपुट प्रतिबाधा उच्च और निम्न स्थिति के बीच विषम होती है, जिससे वे ट्रांसमिशन लाइनों को चलाने के लिए अनुपयुक्त हो जाते हैं। यह दोष सामान्यतः विशेष लाइन-ड्राइवर उपकरणों के साथ आउटपुट को बफ़र करके दूर किया जाता है जहाँ संकेतों को केबल के माध्यम से भेजने की आवश्यकता होती है। ईसीएल, इसकी सममित कम-प्रतिबाधा आउटपुट संरचना के आधार पर होती है, यह दोष नहीं होता है।

टीटीएल टोटेम-पोल आउटपुट संरचना में अधिकांशतः एक क्षणिक ओवरलैप होता है जब ऊपरी और निचले ट्रांजिस्टर दोनों का संचालन होता है, जिसके परिणामस्वरूप बिजली की आपूर्ति से खींची गई धारा की पर्याप्त पल्स होती है। ये पल्स कई एकीकृत परिपथ पैकेजों के बीच अप्रत्याशित तरीके से जोड़ी बना सकती हैं, जिसके परिणामस्वरूप कम शोर मार्जिन और कम प्रदर्शन होता है। टीटीएल सिस्टम में सामान्यतः प्रत्येक एक या दो अधिक आईसी पैकेज के लिए एक डीकपलिंग संधारित्र होता है, जिससें एक टीटीएल चिप से एक धारा पल्स आपूर्ति वोल्टेज को दूसरे से कम नही करने देती है।

1980 के वर्षो के मध्य में, कई निर्माता टीटीएल-संगत इनपुट और आउटपुट स्तरों के साथ सीएमओएस लॉजिक समकक्षों की आपूर्ति करते थे, सामान्यतः समकक्ष टीटीएल घटक के समान और समान पिनआउट के साथ भाग संख्याएं होती हैं। उदाहरण के लिए, 74एचसीटी00 श्रृंखला बाइपोलर 7400 श्रृंखला भागों के लिए कई ड्रॉप-इन प्रतिस्थापन प्रदान करती है, परंतु सीएमओएस तकनीक का उपयोग करती थी।

उप-प्रकार

प्रौद्योगिकी की क्रमिक पीढ़ियों ने बेहतर बिजली की खपत या स्विचिंग गति, या दोनों के साथ संगत भागों का उत्पादन किया था। चूकीं विक्रेताओं ने समान रूप से इन विभिन्न उत्पाद लाइनों को एससीएचओटीटीकेवाई डायोड के साथ टीटीएल के रूप में विपणन किया गया था, कुछ अंतर्निहित परिपथ, जैसे कि एलएस परिवार में उपयोग किया जाता है, जिसको डीटीएल माना जा सकता है।[29] बुनियादी टीटीएल परिवार के बदलाव और उत्तराधिकारी, जिसमें 10एनएस का एक विशिष्ट गेट प्रसार विलंब होता है और 10 mW प्रति गेट का बिजली अपव्यय होता है, एक पावर-देरी उत्पाद (पीडीपी ) या लगभग 100 जूल की स्विचिंग ऊर्जा के लिए, इसमें सम्मलित होता हैं:

  • कम-शक्ति टीटीएल (एल), जिसने बिजली की खपत (1 mW) में कमी के लिए स्विचिंग गति (33एनएस ) का कारोबार किया (अब अनिवार्य रूप से CMOएस तर्क द्वारा प्रतिस्थापित) था।
  • उच्च-गति टीटीएल (एच), मानक टीटीएल (6एनएस ) की तुलना में तेज़ स्विचिंग के साथ होते है परंतु महत्वपूर्ण रूप से उच्च शक्ति अपव्यय (22 mW) के होते है।
  • एससीएचओटीटीकेवाई टीटीएल (एस ), 1969 में प्रस्तुत किया गया था, जिसने चार्ज स्टोरेज को रोकने और स्विचिंग समय में सुधार करने के लिए गेट इनपुट पर एससीएचओटीटीकेवाई डायोड क्लैम्प का उपयोग किया था। ये द्वार अधिक तेजी से (3एनएस) संचालित होते थे परंतु उच्च शक्ति अपव्यय (19 mW) था
  • लो-पॉवर एससीएचओटीटीकेवाई टीटीएल (एलएस ) गति (9.5एनएस ) और कम बिजली की खपत (2 mW), और लगभग 20 पीजे का पीडीपी का एक अच्छा संयोजन प्रदान करने के लिए लो-पॉवर टीटीएल और एससीएचओटीटीकेवाई डायोड के उच्च प्रतिरोध मूल्यों का उपयोग किया करता था.संभवतः टीटीएल का सबसे सधारण प्रकार, इनका उपयोग माइक्रो कंप्यूटर में ग्लू लॉजिक के रूप में किया जाता था, अनिवार्य रूप से पूर्व एच, एल, और एस उप-परिवारों को प्रतिस्थापित करता था।
  • फेयरचाइल्ड और टीआई से क्रमशः एलएस के फास्ट (एफ) और एडवांस्ड-शोट्की (एएस) वेरिएंट, लगभग 1985, मिलर प्रभाव -किलर परिपथ के साथ निम्न-से-उच्च संक्रमण को गति देने के लिए इसका उपयोग किया जाता था। इन परिवारों ने क्रमशः 10 पीजे और 4 पीजे का पीडीपी हासिल किया था, जो सभी टीटीएल परिवारों में सबसे कम होता है।
  • 3.3-वोल्ट बिजली आपूर्ति और मेमोरी इंटरफेसिंग के लिए लो-वोल्टेज टीटीएल (एलवीटीटीएल) होता है।

अधिकांश निर्माता वाणिज्यिक और विस्तारित तापमान की रेंज को प्रस्तुत करते हैं: उदाहरण के लिए टेक्सास इंस्ट्रूमेंट्स 7400 श्रृंखला भागों को 0 से 70 डिग्री सेल्सियस तक रेट किया गया था, और 5400 श्रृंखला उपकरणों को -55 से +125 डिग्री सेल्सियस की सैन्य-विनिर्देश तापमान सीमा पर रेट किया गया था।

सैन्य और एयरोस्पेस अनुप्रयोगों के लिए विशेष गुणवत्ता स्तर और उच्च-विश्वसनीयता वाले पुर्जे उपलब्ध होते हैं।

अंतरिक्ष अनुप्रयोगों के लिए विकिरण-कठोर उपकरण (उदाहरण के लिए एसएनजे 54 श्रृंखला से) प्रस्तुत किए जाते हैं।

अनुप्रयोग

बहुत बड़े पैमाने पर एकीकरण उपकरणों के आगमन से पहले, टीटीएल एकीकृत परिपथ मिनी कंप्यूटर और मेनफ़्रेम कंप्यूटर कंप्यूटर के प्रोसेसर के निर्माण की एक मानक विधि होती थी; जैसे डिजिटल उपकरण निगम वी AX(वैक्स) और डेटा सामान्य ग्रहण, और मशीन टूल न्यूमेरिकल कंट्रोल, प्रिंटर और विडियो डिस्प्ले टर्मिनल जैसे उपकरणों के लिए होती थी। जैसे-जैसे माइक्रोप्रोसेसर अधिक कार्यात्मक होते गए, टीटीएल डिवाइस ग्लू लॉजिक अनुप्रयोगों के लिए महत्वपूर्ण होते गए, जैसे कि मदरबोर्ड पर फास्ट बस ड्राइवर, जो विएलएसआई तत्वों में महसूस किए गए फ़ंक्शन ब्लॉक को एक साथ बांधते हैं। गीगाट्रॉन टीटीएल पूरी तरह से टीटीएल एकीकृत परिपथ के साथ निर्मित प्रोसेसर का एक और वर्तमान (2018) उदाहरण है।

एनालॉग एप्लिकेशन

जबकि मूल रूप से तर्क-स्तर के डिजिटल संकेतों को संभालने के लिए डिज़ाइन किया गया था, एक टीटीएल इन्वर्टर को एनालॉग एम्पलीफायर के रूप में पक्षपाती किया जा सकता है। आउटपुट और इनपुट के बीच एक अवरोधक को जोड़ने से टीटीएल तत्व एक नकारात्मक प्रतिक्रिया एम्पलीफायर के रूप में बदल जाता है। ऐसे एम्पलीफायर्स एनालॉग सिग्नल को डिजिटल डोमेन में बदलने के लिए उपयोगी हो सकते हैं, परंतु सामान्यतः इसका उपयोग नहीं किया जा सकता है जहां एनालॉग एम्प्लीफिकेशन प्राथमिक उद्देश्य होते है।[30] टीटीएल इनवर्टर का उपयोग क्रिस्टल ऑसिलेटर में भी किया जा सकता है जहां उनकी एनालॉग प्रवर्धन क्षमता महत्वपूर्ण होती है।

एक टीटीएल गेट असावधानीवश में एक एनालॉग एम्पलीफायर के रूप में काम कर सकता है यदि इनपुट धीरे-धीरे बदलते इनपुट सिग्नल से जुड़ा होता है जो अनिर्दिष्ट क्षेत्र को 0.8 वी से 2 वी तक पार करता है। जब इनपुट इस सीमा में होता है तो आउटपुट अनियमित हो सकता है। इस तरह धीरे-धीरे बदलते इनपुट से आउटपुट परिपथ में अतिरिक्त बिजली अपव्यय भी हो सकता है। यदि इस तरह के एक एनालॉग इनपुट का उपयोग किया जाता है, तो श्मिट ट्रिगर इनपुट के साथ विशेष टीटीएल भाग उपलब्ध होते हैं जो एनालॉग इनपुट को डिजिटल मान में परिवर्तित कर देते है, प्रभावी रूप से एक बिट ए से डी कनवर्टर के रूप में काम करते हैं।

यह भी देखें

संदर्भ

  1. Eren, H. (2003), Electronic Portable Instruments: Design and Applications, CRC Press, ISBN 0-8493-1998-6
  2. US 3283170, Buie, James L., "युग्मन ट्रांजिस्टर तर्क और अन्य सर्किट", issued 1966-11-01, assigned to TRW Semiconductors, Inc. 
  3. 3.0 3.1 "1963: Standard Logic Families Introduced". Timeline. The Computer History Museum. 2007.
  4. Lojek, Bo (2006), History of semiconductor engineering, Springer, pp. 212–215, ISBN 3-540-34257-5
  5. Engineering Staff (1973). डिजाइन इंजीनियरों के लिए टीटीएल डाटा बुक (1st ed.). Dallas: Texas Instruments. OCLC 6908409.
  6. Turner, L. W., ed. (1976), Electronics Engineer's Reference Book (4th ed.), London: Newnes-Butterworth, ISBN 0408001682
  7. Pittler, M. S.; Powers, D. M.; Schnabel, D. L. (1982), "System development and technology aspects of the IBM 3081 Processor Complex" (PDF), IBM Journal of Research and Development, 26 (1): 2–11, doi:10.1147/rd.261.0002, archived (PDF) from the original on 2011-06-04, p. 5.
  8. "उन्नत शोट्की परिवार" (PDF). Texas Instruments. 1985. SDAA010. Archived (PDF) from the original on 2011-06-04.
  9. Lancaster, D. (1975), TTL Cookbook, Indianapolis: Howard W. Sams and Co., p. preface, ISBN 0-672-21035-5
  10. Klein, E. (2008). "केनबाक -1". Vintage-Computer.com.
  11. Wood, Lamont (8 August 2008). "Forgotten PC history: The true origins of the personal computer". Computerworld. Archived from the original on 2008-08-14.
  12. Gray, Paul E.; Searle, Campbell L. (1969), Electronic Principles Physics, Models, and Circuits (1st ed.), Wiley, p. 870, ISBN 978-0471323983
  13. Buie 1966, column 4
  14. Millman, J. (1979), Microelectronics Digital and Analog Circuits and Systems, New York: McGraw-Hill Book Company, p. 147, ISBN 0-07-042327-X
  15. https://www.ti.com/lit/ds/symlink/sn5401.pdf[bare URL PDF]
  16. https://www.ti.com/lit/ds/symlink/sn74ls03.pdf[bare URL PDF]
  17. https://www.ti.com/lit/ds/symlink/sn54ls26.pdf[bare URL PDF]
  18. Transistor–Transistor Logic (TTL). siliconfareast.com. 2005. Retrieved 17 September 2008. p. 1.
  19. Tala, D. K. Digital Logic Gates Part-V. asic-world.com. 2006.
  20. SN7400 datasheet - Texas Instruments
  21. Haseloff, Eilhard. "तर्क के साथ डिजाइनिंग" (PDF). TI.com. Texas Instruments Incorporated. pp. 6–7. Archived (PDF) from the original on 2011-10-24. Retrieved 27 October 2018.
  22. TTL logic levels
  23. "DM7490A Decade and Binary Counter" (PDF). Fairchild. Archived (PDF) from the original on 2005-03-23. Retrieved 14 October 2016.
  24. "eclab संसाधन और सूचना।". ecelab.com. Archived from the original on 19 September 2010. Retrieved 13 March 2023.
  25. Marston, R. M. (2013). Modern TTL Circuits Manual. Elsevier. p. 16. ISBN 9781483105185. [74-series] devices are usually encapsulated in a plastic 14-pin, 16-pin, or 24-pin dual-in-line package (DIP)
  26. Rymaszewski, E. J.; Walsh, J. L.; Leehan, G. W. (1981), "Semiconductor Logic Technology in IBM", IBM Journal of Research and Development, 25 (5): 603–616, doi:10.1147/rd.255.0603
  27. Seraphim, D. P.; Feinberg, I. (1981), "Electronic Packaging Evolution in IBM", IBM Journal of Research and Development, 25 (5): 617–630, doi:10.1147/rd.255.0617
  28. Horowitz, Paul; Hill, Winfield (1989), The Art of Electronics (2nd ed.), Cambridge University Press, p. 970, ISBN 0-521-37095-7 states, "...CMOS devices consume power proportional to their switching frequency...At their maximum operating frequency they may use more power than equivalent bipolar TTL devices."
  29. Ayers, J. UConn EE 215 notes for lecture 4. Harvard University faculty web page. Archive of web page from University of Connecticut. n.d. Retrieved 17 September 2008.
  30. Wobschall, D. (1987), Circuit Design for Electronic Instrumentation: Analog and Digital Devices from Sensor to Display (2d ed.), New York: McGraw Hill, pp. 209–211, ISBN 0-07-071232-8


अग्रिम पठन


बाहरी संबंध