स्थानीय समय (गणित): Difference between revisions

From Vigyanwiki
Line 61: Line 61:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/05/2023]]
[[Category:Created On 24/05/2023]]
[[Category:Vigyan Ready]]

Revision as of 14:30, 30 June 2023

स्थानीय समय की सतह के साथ इटो प्रक्रिया का एक नमूना पथ।

स्टोकेस्टिक प्रक्रियाओं के गणितीय सिद्धांत में, स्थानीय समय सेमीमार्टिंगेल प्रक्रियाओं से जुड़ी एक स्टोकेस्टिक प्रक्रिया है, जैसे ब्राउनियन गति, जो किसी कण द्वारा किसी दिए गए स्तर पर बिताए गए समय की मात्रा को दर्शाती है। स्थानीय समय विभिन्न स्टोकेस्टिक एकीकरण सूत्रों में प्रकट होता है, जैसे कि तनाका का सूत्र, यदि इंटीग्रैंड पर्याप्त रूप से सुचारू नहीं है। इसका अध्ययन सांख्यिकीय यांत्रिकी में यादृच्छिक क्षेत्रों के संदर्भ में भी किया जाता है।

औपचारिक परिभाषा

एक निरंतर वास्तविक मूल्य वाला सेमीमार्टिंगेल के लिए , का स्थानिक समय बिंदु पर स्टोकेस्टिक प्रक्रिया है जिसे अनौपचारिक रूप से परिभाषित किया किया जाता है।

यहां डेल्टा डिरेक डेल्टा फ़ंक्शन है और द्विघात भिन्नता है। यह एक नवीनतम नवीकरण है, जिसे पॉल लेवी द्वारा आविष्कृत किया गया है। मूल विचार यह है कितने समय का एक (उचित रूप से पुनर्मापित और समय-पैरामीत्रित) एक माप है, जो बताता है कि कितना समय ने पर खर्च किया है समय तक। अधिक सख्ती से कहा जा सकता है कि यह लगभग सुनिश्चित सीमा के रूप में लिखा जा सकता है।

यह सदैव मौजूद होने का प्रमाणित किया जा सकता है। ध्यान दें कि ब्राउनियन गति के विशेष मामले में या अधिक सामान्य रूप से एक वास्तविक मूल्य वाले विकीर्ण के रूप में जहां एक ब्राउनियन गति है), शब्द सरलतापूर्वक में संक्षिप्त हो जाता है, जो यह समझाता है कि इसे पर का स्थानिक समय कहा जाता है। एक अविचलित अवस्था-स्थान प्रक्रिया के लिए , स्थानीय समय को और सरलतापूर्वक व्यक्त किया जा सकता है जैसे कि[1]

तनाका का सूत्र

टानाका का सूत्र एक ऐसी परिभाषा भी प्रदान करता है जो किसी भी अनियमित निरंतर सेमीमार्टिंगेल के लिए स्थानिक समय की परिभाषा देता है पर [2]

इसका एक और अधिक सामान्य रूप मेयर[3] और वांग;[4] ने सिद्ध किया गया था[3] ,यह सूत्र दोहरी विभेद्यता वाले फ़ंक्शनों के लिए आईटो के लेमा को विस्तारित करता है। यदि व्युत्पन्न के साथ बिल्कुल निरंतर है जो तब परिबद्ध भिन्नता संकेतक है

यहाँ बायाँ व्युत्पन्न है।

अगर एक ब्राउनियन गति है, तो किसी के लिए भी स्थानीय समय का क्षेत्र एक संशोधन है जो a.s है। होल्डर लगातार अंदर प्रतिपादक के साथ , समान रूप से बंधे हुए और .[5] सामान्य रूप से, का एक संशोधन होता है जो में निरंतर होता है और में कैडलैग होता है।

टानाका का सूत्र एक-आयामी प्रतिफलनीय ब्राउनियन मोशन के लिए स्पष्ट डूब-मेयर विश्लेषण प्रदान करता है .

रे-नाइट प्रमेय

स्थैतिक प्रक्रिया पर आधारित तत्वांक क्षेत्र एक अंतरिक्ष पर एक स्टोकेस्टिक प्रक्रिया से जुड़ा हुआ है यादृच्छिक क्षेत्रों के क्षेत्र में एक अच्छी तरह से अध्ययन किया जाने वाला विषय है। रे-नाइट प्रकार के प्रमेय क्षेत्र L t एक गाऊसी प्रक्रिया के साथ जुड़े होते हैं।

सामान्यतया पहले प्रकार के रे-नाइट प्रकार के सिद्धांत प्रमेय क्षेत्र अंतर्निहित प्रक्रिया के हिटिंग समय पर पर विचार करते हैंt , जबकि दूसरे प्रकार के सिद्धांत एक रोकथाम समय के आधार पर होते हैं जिस पर स्थानिक समय का क्षेत्र पहली बार एक दिए गए मान से अधिक होता है।

पहला रे-नाइट प्रमेय

चलो (बीt)t ≥ 0 बी से शुरू होने वाली एक आयामी ब्राउनियन गति हो0 = ए> 0, और (डब्ल्यूt)t≥0 डब्ल्यू से शुरू होने वाली एक मानक द्वि-आयामी ब्राउनियन गति हो0 = 0 ∈ आर2</उप>। रुकने के समय को परिभाषित करें जिस पर बी पहली बार उत्पत्ति से टकराता है, . रे[6] और नाइट[7] (स्वतंत्र रूप से) ने दिखाया

 

 

 

 

(1)

जहां (एलt)t ≥ 0 के स्थानीय समय का क्षेत्र है (बीt)t ≥ 0, और समानता सी [0, ए] पर वितरण में है। प्रक्रिया | डब्ल्यूx|2 को वर्गाकार बेसेल प्रक्रिया के रूप में जाना जाता है।

दूसरी किरण-नाइट प्रमेय

चलो (बीt)t ≥ 0 एक मानक एक आयामी ब्राउनियन गति हो B0 = 0 ∈ R, और माना (Lt)t ≥ 0 स्थानीय समय का संबद्ध क्षेत्र हो। चलो टीa पहली बार हो जब शून्य पर स्थानीय समय a> 0 से अधिक हो

चलो (डब्ल्यूt)t ≥ 0 डब्ल्यू से शुरू होने वाली एक स्वतंत्र एक-आयामी ब्राउनियन गति हो0 = 0, तब[8]

 

 

 

 

(2)

समान रूप से, प्रक्रिया (जो स्थानिक चर में एक प्रक्रिया है ) पर शुरू हुई 0-आयामी बेसेल प्रक्रिया के वर्ग के वितरण के बराबर है , और जैसा कि मार्कोवियन है।

सामान्यीकृत रे-नाइट प्रमेय

रे-नाइट प्रकार के अधिक सामान्य स्टोकास्टिक प्रक्रियाओं के परिणामों का गहन अध्ययन किया गया है, और प्रबल सममित मार्कोव प्रक्रियाओं के लिए दोनों (1) और (2) के उपमा वाक्य ज्ञात हैं।

यह भी देखें

  • तनाका का सूत्र
  • ब्राउनियन गति
  • यादृच्छिक क्षेत्र

टिप्पणियाँ

  1. Karatzas, Ioannis; Shreve, Steven (1991). ब्राउनियन मोशन और स्टोचैस्टिक कैलकुलस. Springer.
  2. Kallenberg (1997). आधुनिक संभाव्यता की नींव. New York: Springer. pp. 428–449. ISBN 0387949577.
  3. 3.0 3.1 Meyer, Paul-Andre (2002) [1976]. "Un cours sur les intégrales stochastiques". Séminaire de probabilités 1967–1980. Lect. Notes in Math. Vol. 1771. pp. 174–329. doi:10.1007/978-3-540-45530-1_11. ISBN 978-3-540-42813-8.
  4. Wang (1977). "Generalized Itô's formula and additive functionals of Brownian motion". Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete. 41 (2): 153–159. doi:10.1007/bf00538419. S2CID 123101077.
  5. Kallenberg (1997). आधुनिक संभाव्यता की नींव. New York: Springer. pp. 370. ISBN 0387949577.
  6. Ray, D. (1963). "एक प्रसार प्रक्रिया के ठहराव समय". Illinois Journal of Mathematics. 7 (4): 615–630. doi:10.1215/ijm/1255645099. MR 0156383. Zbl 0118.13403.
  7. Knight, F. B. (1963). "रैंडम वॉक और ब्राउनियन गति की एक ठहराव घनत्व प्रक्रिया". Transactions of the American Mathematical Society. 109 (1): 56–86. doi:10.2307/1993647. JSTOR 1993647.
  8. Marcus; Rosen (2006). मार्कोव प्रोसेस, गॉसियन प्रोसेस और लोकल टाइम्स. New York: Cambridge University Press. pp. 53–56. ISBN 0521863007.


संदर्भ

  • K. L. Chung and R. J. Williams, Introduction to Stochastic Integration, 2nd edition, 1990, Birkhäuser, ISBN 978-0-8176-3386-8.
  • M. Marcus and J. Rosen, Markov Processes, Gaussian Processes, and Local Times, 1st edition, 2006, Cambridge University Press ISBN 978-0-521-86300-1
  • P. Mörters and Y. Peres, Brownian Motion, 1st edition, 2010, Cambridge University Press, ISBN 978-0-521-76018-8.