सघन सम्मुच्य: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
# <math>X</math> का सबसे छोटा विवृत समुच्चय स्वयं <math>X</math> है, जो <math>A</math> से युक्त है। | # <math>X</math> का सबसे छोटा विवृत समुच्चय स्वयं <math>X</math> है, जो <math>A</math> से युक्त है। | ||
#<math>X</math> में <math>A</math> का [[क्लोजर (टोपोलॉजी)]] <math>X</math> के बराबर है। जो कि <math>\operatorname{cl}_X A = X.</math> है। | |||
#<math>A</math> के [[पूरक (सेट सिद्धांत)]] का आंतरिक भाग (टोपोलॉजी) रिक्त है। जो कि <math>\operatorname{int}_X (X \setminus A) = \varnothing.</math> है। | |||
< | #<math>X</math> में प्रत्येक बिंदु या तो <math>A</math> से संबंधित होता है या <math>A.</math> का एक [[सीमा बिंदु|लिमिट प्वॉइंट]] है। | ||
< | #प्रत्येक के लिए <math>x \in X,</math> हर [[पड़ोस (गणित)]] <math>U</math> का <math>x</math> [[चौराहा (सेट सिद्धांत)]] <math>A;</math> वह है, <math>U \cap A \neq \varnothing.</math></ली> <ली><math>A</math> के प्रत्येक गैर-रिक्त खुले उपसमुच्चय को प्रतिच्छेद करता है <math>X.</math></ली> <ली></ली> </ओल> और अगर <math>\mathcal{B}</math> टोपोलॉजी के लिए खुले सेटों का [[आधार (टोपोलॉजी)]] है <math>X</math> तो इस सूची को शामिल करने के लिए बढ़ाया जा सकता है: <ओल प्रारंभ = 7> | ||
<ली><math>A</math> के प्रत्येक गैर-रिक्त खुले उपसमुच्चय को प्रतिच्छेद करता है <math>X.</math></ली> | |||
<ली></ली> | |||
</ओल> | |||
और अगर <math>\mathcal{B}</math> टोपोलॉजी के लिए खुले सेटों का [[आधार (टोपोलॉजी)]] है <math>X</math> तो इस सूची को शामिल करने के लिए बढ़ाया जा सकता है: | |||
<ओल प्रारंभ = 7> | |||
<li>प्रत्येक के लिए <math>x \in X,</math> प्रत्येक {{em|basic}} पड़ोस (गणित) <math>B \in \mathcal{B}</math> का <math>x</math> चौराहा (सेट सिद्धांत) <math>A.</math></ली> | <li>प्रत्येक के लिए <math>x \in X,</math> प्रत्येक {{em|basic}} पड़ोस (गणित) <math>B \in \mathcal{B}</math> का <math>x</math> चौराहा (सेट सिद्धांत) <math>A.</math></ली> | ||
<ली><math>A</math> हर गैर-खाली को काटता है <math>B \in \mathcal{B}.</math></ली> | <ली><math>A</math> हर गैर-खाली को काटता है <math>B \in \mathcal{B}.</math></ली> |
Revision as of 08:10, 29 May 2023
टोपोलॉजी और गणित के संबंधित क्षेत्रों में, एक टोपोलॉजिकल स्पेस X के एक A उपसमुच्चय के X में को 'घना' कहा जाता है। यदि X का प्रत्येक बिंदु से संबंधित है या फिर अनगिनत रूप से के सदस्य के पास है। उदाहरण के लिए, परिमेय संख्याएँ वास्तविक संख्याओं का सघन उपसमुच्चय होती हैं क्योंकि प्रत्येक वास्तविक संख्या एक परिमेय संख्या होती है या उसके पास एक परिमेय संख्या होती है। (डायोफैंटाइन सन्निकटन देखें)।
औपचारिक रूप से एक टोपोलॉजिकल स्पेस X का घनत्व के सघन उपसमुच्चय X की सबसे कम कार्डिनैलिटी है।[1]
परिभाषा
टोपोलॉजिकल स्पेस का उपसमुच्चय को का सघन उपसमुच्चय कहा जाता है। यदि निम्नलिखित समकक्ष नियमों में से कोई भी संतुष्ट है:
- का सबसे छोटा विवृत समुच्चय स्वयं है, जो से युक्त है।
- में का क्लोजर (टोपोलॉजी) के बराबर है। जो कि है।
- के पूरक (सेट सिद्धांत) का आंतरिक भाग (टोपोलॉजी) रिक्त है। जो कि है।
- में प्रत्येक बिंदु या तो से संबंधित होता है या का एक लिमिट प्वॉइंट है।
- प्रत्येक के लिए हर पड़ोस (गणित) का चौराहा (सेट सिद्धांत) वह है, </ली> <ली> के प्रत्येक गैर-रिक्त खुले उपसमुच्चय को प्रतिच्छेद करता है </ली> <ली></ली> </ओल> और अगर टोपोलॉजी के लिए खुले सेटों का आधार (टोपोलॉजी) है तो इस सूची को शामिल करने के लिए बढ़ाया जा सकता है: <ओल प्रारंभ = 7>
मीट्रिक रिक्त स्थान में घनत्व
मीट्रिक रिक्त स्थान के मामले में सघन सेट की एक वैकल्पिक परिभाषा निम्नलिखित है। जब की टोपोलॉजी (संरचना)। एक मीट्रिक (गणित), टोपोलॉजिकल क्लोजर द्वारा दिया जाता है का में का संघ (सेट सिद्धांत) है और एक अनुक्रम की सभी सीमा का सेट # तत्वों के सामयिक स्थान (इसकी सीमा अंक),
अगर एक पूर्ण मीट्रिक स्थान में सघन खुला सेट सेट का एक क्रम है, तब में भी घना है यह तथ्य बेयर श्रेणी प्रमेय के समकक्ष रूपों में से एक है।
उदाहरण
सामान्य टोपोलॉजी के साथ वास्तविक संख्याओं में एक गणनीय सेट घने उपसमुच्चय के रूप में परिमेय संख्याएँ होती हैं जो दर्शाती हैं कि एक टोपोलॉजिकल स्पेस के घने उपसमुच्चय की कार्डिनैलिटी स्पेस की कार्डिनैलिटी से सख्ती से छोटी हो सकती है। अपरिमेय संख्याएं एक और सघन उपसमुच्चय हैं जो दर्शाता है कि एक टोपोलॉजिकल स्पेस में कई अलग करना सेट घने उपसमुच्चय हो सकते हैं (विशेष रूप से, दो सघन उपसमुच्चय एक दूसरे के पूरक हो सकते हैं), और उन्हें एक ही कार्डिनैलिटी का होना भी आवश्यक नहीं है। शायद इससे भी अधिक आश्चर्यजनक रूप से, परिमेय और अपरिमेय दोनों में खाली आंतरिक भाग होते हैं, यह दर्शाता है कि सघन समुच्चय में कोई गैर-रिक्त खुला समुच्चय नहीं होना चाहिए। एक टोपोलॉजिकल स्पेस के दो घने खुले उपसमुच्चय का प्रतिच्छेदन फिर से घना और खुला होता है।[proof 1] रिक्त समुच्चय स्वयं का सघन उपसमुच्चय होता है। लेकिन गैर-रिक्त स्थान का प्रत्येक घना उपसमुच्चय भी गैर-खाली होना चाहिए।
Weierstrass सन्निकटन प्रमेय द्वारा, कोई भी दी गई सम्मिश्र संख्या | एक बंद अंतराल पर परिभाषित जटिल-मूल्यवान सतत फलन एक बहुपद समारोह द्वारा वांछित के रूप में एकसमान अभिसरण हो सकता है। दूसरे शब्दों में, अंतरिक्ष में बहुपद कार्य सघन हैं अंतराल पर निरंतर जटिल-मूल्यवान कार्यों की सर्वोच्च मानदंड से लैस।
प्रत्येक मीट्रिक स्थान अपने समापन (मीट्रिक स्थान) में सघन है।
गुण
हर टोपोलॉजिकल स्पेस अपने आप में एक सघन उपसमुच्चय है। एक सेट के लिए असतत टोपोलॉजी से सुसज्जित, संपूर्ण स्थान केवल सघन उपसमुच्चय है। किसी समुच्चय का प्रत्येक अरिक्त उपसमुच्चय तुच्छ टोपोलॉजी से सुसज्जित सघन है, और प्रत्येक टोपोलॉजी जिसके लिए प्रत्येक गैर-खाली सबसेट सघन है, तुच्छ होना चाहिए।
सघनता सकर्मक संबंध है: तीन उपसमुच्चय दिए गए हैं और एक टोपोलॉजिकल स्पेस का साथ ऐसा है कि में घना है और में घना है (संबंधित सबस्पेस टोपोलॉजी में) तब में भी घना है विशेषण समारोह निरंतर कार्य (टोपोलॉजी) फंक्शन के तहत एक सघन उपसमुच्चय की छवि (गणित) फिर से सघन होती है। एक टोपोलॉजिकल स्पेस का घनत्व (इसके घने उपसमुच्चय की कम से कम कार्डिनैलिटी) एक टोपोलॉजिकल इनवेरिएंट है।
जुड़ा हुआ स्थान डेंस सबसेट के साथ एक टोपोलॉजिकल स्पेस जरूरी है कि वह खुद जुड़ा हो।
हौसडॉर्फ रिक्त स्थान में निरंतर कार्य घने उपसमुच्चय पर उनके मूल्यों द्वारा निर्धारित किए जाते हैं: यदि दो निरंतर कार्य हॉसडॉर्फ अंतरिक्ष में के सघन उपसमुच्चय पर सहमत हैं तब वे सभी पर सहमत होते हैं मीट्रिक रिक्त स्थान के लिए सार्वभौमिक रिक्त स्थान हैं, जिसमें दिए गए घनत्व के सभी रिक्त स्थान एम्बेडिंग हो सकते हैं: घनत्व का एक मीट्रिक स्थान की एक उपसमष्टि के लिए सममितीय है कार्टेशियन उत्पाद # के अनंत उत्पादों पर वास्तविक निरंतर कार्यों का स्थान इकाई अंतराल की प्रतियां। [2]
संबंधित धारणाएँ
एक बिंदु एक उपसमुच्चय का एक टोपोलॉजिकल स्पेस का का सीमा बिन्दु कहा जाता है (में ) अगर हर पड़ोस का एक बिंदु भी शामिल है के अलावा अन्य स्वयं, और का एक पृथक बिंदु अन्यथा। पृथक बिंदुओं के बिना एक उपसमुच्चय को सघन-स्वयं कहा जाता है।
उपसमुच्चय एक टोपोलॉजिकल स्पेस का कहा जाता है कहीं नहीं घना सेट (में ) यदि कोई पड़ोस नहीं है जिस पर घना है। समान रूप से, एक टोपोलॉजिकल स्पेस का एक उपसमुच्चय कहीं भी सघन नहीं है अगर और केवल अगर इसके बंद होने का आंतरिक भाग खाली है। कहीं नहीं सघन सेट के पूरक का आंतरिक भाग हमेशा सघन होता है। एक बंद कहीं नहीं घने सेट का पूरक एक घना खुला सेट है। एक टोपोलॉजिकल स्पेस दिया गया उपसमुच्चय का जिसे कई कहीं नहीं के घने उपसमुच्चय के संघ के रूप में व्यक्त किया जा सकता है अल्प समुच्चय कहा जाता है। परिमेय संख्याएँ, जबकि वास्तविक संख्या में सघन हैं, वास्तविक के उपसमुच्चय के रूप में अल्प हैं।
एक गणनीय सघन उपसमुच्चय के साथ एक सामयिक स्थान को वियोज्य स्थान कहा जाता है। एक टोपोलॉजिकल स्पेस एक बाहर की जगह है अगर और केवल अगर कई घने खुले सेटों का चौराहा हमेशा घना होता है। एक टोपोलॉजिकल स्पेस को हल करने योग्य स्थान कहा जाता है यदि यह दो अलग-अलग घने उपसमुच्चय का मिलन हो। अधिक आम तौर पर, एक टोपोलॉजिकल स्पेस को बुनियादी संख्या κ के लिए κ-रिज़ॉल्वेबल कहा जाता है यदि इसमें κ जोड़ीदार अलग-अलग घने सेट होते हैं।
एक टोपोलॉजिकल स्पेस का एक एम्बेडिंग एक सघन स्थान के एक सघन उपसमुच्चय के रूप में एक सघनता (गणित) कहा जाता है टोपोलॉजिकल वेक्टर स्पेस स्थान के बीच एक रैखिक ऑपरेटर और सघन रूप से परिभाषित ऑपरेटर कहा जाता है यदि किसी फ़ंक्शन का डोमेन एक सघन उपसमुच्चय है और यदि किसी फ़ंक्शन की छवि इसके भीतर समाहित है सतत रैखिक विस्तार भी देखें।
एक टोपोलॉजिकल स्पेस हाइपरकनेक्टेड स्पेस है अगर और केवल अगर हर गैर-खाली खुला सेट सघन है एक टोपोलॉजिकल स्पेस सबमैक्सिमल स्पेस है अगर और केवल अगर हर घना सबसेट खुला है।
अगर एक मीट्रिक स्थान है, फिर एक गैर-खाली सबसेट है बताया गया -घना अगर
यह भी देखें
- Blumberg theorem – Any real function on R admits a continuous restriction on a dense subset of R
- Dense order
- Dense (lattice theory)
संदर्भ
- ↑ Steen, L. A.; Seebach, J. A. (1995), Counterexamples in Topology, Dover, ISBN 0-486-68735-X
- ↑ Kleiber, Martin; Pervin, William J. (1969). "एक सामान्यीकृत बनच-मजूर प्रमेय". Bull. Austral. Math. Soc. 1 (2): 169–173. doi:10.1017/S0004972700041411.
proofs
- ↑ Suppose that and are dense open subset of a topological space If then the conclusion that the open set is dense in is immediate, so assume otherwise. Let is a non-empty open subset of so it remains to show that is also not empty. Because is dense in and is a non-empty open subset of their intersection is not empty. Similarly, because is a non-empty open subset of and is dense in their intersection is not empty.
सामान्य संदर्भ
- Nicolas Bourbaki (1989) [1971]. सामान्य टोपोलॉजी, अध्याय 1-4. Elements of Mathematics. Springer-Verlag. ISBN 3-540-64241-2.
- Bourbaki, Nicolas (1989) [1966]. General Topology: Chapters 1–4 [Topologie Générale]. Éléments de mathématique. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64241-1. OCLC 18588129.
- Dixmier, Jacques (1984). General Topology. Undergraduate Texts in Mathematics. Translated by Berberian, S. K. New York: Springer-Verlag. ISBN 978-0-387-90972-1. OCLC 10277303.
- Munkres, James R. (2000). Topology (Second ed.). Upper Saddle River, NJ: Prentice Hall, Inc. ISBN 978-0-13-181629-9. OCLC 42683260.
- Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Dover reprint of 1978 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-486-68735-3, MR 0507446
- Willard, Stephen (2004) [1970]. General Topology. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-43479-7. OCLC 115240.
श्रेणी:सामान्य टोपोलॉजी