भाप का विस्फोट: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Explosion created from a violent boiling of water}} | {{Short description|Explosion created from a violent boiling of water}} | ||
{{see also|Boiler explosion|Boiling liquid expanding vapor explosion}} | {{see also|Boiler explosion|Boiling liquid expanding vapor explosion}} | ||
[[Image:Littoral explosion at Waikupanaha 2.jpg|thumb|upright=1.5| | [[Image:Littoral explosion at Waikupanaha 2.jpg|thumb|upright=1.5|वायुई के बड़े द्वीप में वैकुपनहा [[महासागर]] में प्रवेश क्षेत्र में समुद्री क्षेत्र में विस्फोट समुद्र में [[ पर्याप्त |पर्याप्त]] के प्रवेश के कारण हुआ था।]][[भाप]] [[विस्फोट]] विस्फोट है जो जल या बर्फ के भाप में तेजी से उबलने या चमकने के कारण होता है, तब होता है जब जल या बर्फ या तो अतितापित होता है, इसके भीतर उत्पन्न महीन उष्ण मलबे से तेजी से उष्ण होता है, या पिघली हुई धातुओं के संपर्क से उष्ण होता है (जैसा कि में होता है) [[ परमाणु रिएक्टर कोर |परमाणु रिएक्टर कोर]] में जल के साथ पिघले हुए न्यूक्लियर-रिएक्टर [[ईंधन की छड़]] का फ्यूल-कूलेंट इंटरेक्शन, या एफसीआई, [[ परमाणु मंदी |परमाणु मंदी]] के बाद | कोर-मेल्टडाउन)। दाब पात्र, जैसे कि [[दाबित जल रिएक्टर]] | दाबित जल (परमाणु) रिएक्टर, जो वायुमंडलीय दाब से ऊपर संचालित होते हैं, भाप विस्फोट के लिए परिस्थितियाँ भी प्रदान कर सकते हैं। जल अत्यधिक गति से ठोस या तरल से गैस में बदलता है, मात्रा में नाटकीय रूप से वृद्धि होती है। भाप विस्फोट भाप और उबलते-उष्ण जल और उष्ण माध्यम को सभी दिशाओं में छिड़कता है (यदि अन्यथा सीमित नहीं है, उदाहरण के लिए कंटेनर की दीवारों से), जलने और जलने का खतरा उत्पन्न करता है। | ||
भाप विस्फोट | भाप विस्फोट सामान्यतः [[रासायनिक विस्फोट]] नहीं होते हैं, चूंकि कई पदार्थ भाप के साथ रासायनिक रूप से प्रतिक्रिया करते हैं (उदाहरण के लिए, [[zirconium]] और सुपरहिटेड [[ग्रेफाइट]] (अशुद्ध [[कार्बन]], सी) [[हाइड्रोजन]] (एच) देने के लिए क्रमशः भाप और वायु के साथ प्रतिक्रिया करते हैं।<sub>2</sub>), जो वायु में [[हाइड्रोजन सुरक्षा]] (ओ<sub>2</sub>) जल बनाने के लिए या एच<sub>2</sub>ओ) जिससे कि बाद में रासायनिक विस्फोट और आग लग जाए। कुछ भाप विस्फोट विशेष प्रकार के उबलते तरल विस्तार वाष्प विस्फोट (BLEVE) प्रतीत होते हैं, और संग्रहीत सुपरहीट की रिहाई पर निर्भर करते हैं। किन्तु कई बड़े पैमाने की घटनाएं, फाउंड्री दुर्घटनाओं सहित, सामग्री के माध्यम से फैलने वाली ऊर्जा-रिलीज फ्रंट के सबूत दिखाती हैं (नीचे एफसीआई का विवरण देखें), जहां बल टुकड़े बनाते हैं और उष्ण चरण को ठंडे वाष्पशील में मिलाते हैं; और मोर्चे पर तेजी से उष्णी हस्तांतरण प्रसार को बनाए रखता है। | ||
यदि | यदि जल के तेजी से उष्ण होने के कारण जल के सीमित टैंक में भाप का विस्फोट होता है, तो दबाव की लहर और तेजी से फैलती भाप गंभीर जल के हथौड़े का कारण बन सकती है। यह वह तंत्र था, जिसके कारण 1961 में अमेरिका के इडाहो में, [[SL-1]] परमाणु रिएक्टर पोत ऊपर से कूद गया था {{convert|9|ft}} वायु में जब यह गंभीर दुर्घटना से नष्ट हो गया था। SL-1 के स्थिति में, ईंधन और ईंधन तत्व तात्कालिक ओवरहीटिंग से वाष्पीकृत हो जाते हैं। | ||
इस सामान्य प्रकार की घटनाएँ भी संभव हैं यदि जल-शीतित परमाणु रिएक्टर के ईंधन और ईंधन तत्व धीरे-धीरे पिघल जाएँ। पिघली हुई कोर संरचनाओं और ईंधन के मिश्रण को | इस सामान्य प्रकार की घटनाएँ भी संभव हैं यदि जल-शीतित परमाणु रिएक्टर के ईंधन और ईंधन तत्व धीरे-धीरे पिघल जाएँ। पिघली हुई कोर संरचनाओं और ईंधन के मिश्रण को अधिकांशतः कोरियम कहा जाता है। यदि ऐसा कोरियम जल के संपर्क में आता है, तो पिघले हुए ईंधन (कोरियम) और शीतलक के रूप में जल के बीच हिंसक बातचीत से वाष्प विस्फोट हो सकता है। इस तरह के विस्फोटों को फ्यूल-कूलेंट इंटरेक्शन (एफसीआई) के रूप में देखा जाता है।<ref>{{cite journal |last1=Theofanous |first1=T.G. |last2=Najafi |first2=B. |last3=Rumble |first3=E. |title=An Assessment of Steam-Explosion-Induced Containment Failure. Part I: Probabilistic Aspects |journal=Nuclear Science and Engineering |date=1987 |volume=97 |issue=4 |pages=259–281 |doi=10.13182/NSE87-A23512|bibcode=1987NSE....97..259T }}</ref><ref>{{cite journal |last1=Magallon |first1=D. |title=हल्के जल रिएक्टरों में वाष्प विस्फोट मुद्दे के समाधान की स्थिति और संभावनाएँ|journal=Nuclear Engineering and Technology |date=2009 |volume=41 |issue=5 |pages=603–616|doi=10.5516/NET.2009.41.5.603 |doi-access=free }}</ref> | ||
ईंधन-शीतलक अंतःक्रिया ( | ईंधन-शीतलक अंतःक्रिया (एफसीआई) पर आधारित भाप विस्फोट की गंभीरता तथाकथित प्रीमिक्सिंग प्रक्रिया पर दृढ़ता से निर्भर करती है, जो आसपास के जल-भाप मिश्रण के साथ पिघल के मिश्रण का वर्णन करती है। सामान्यतः, भाप विस्फोट दीक्षा और शक्ति के स्थिति में जल से भरपूर प्रीमिक्स को भाप से भरपूर वातावरण की तुलना में अधिक अनुकूल माना जाता है। | ||
पिघले हुए कोरियम के दिए गए द्रव्यमान से भाप विस्फोट की ताकत के लिए सैद्धांतिक अधिकतम, जिसे अभ्यास में कभी | पिघले हुए कोरियम के दिए गए द्रव्यमान से भाप विस्फोट की ताकत के लिए सैद्धांतिक अधिकतम, जिसे अभ्यास में कभी प्राप्त नहीं किया जा सकता है, निश्चित आकार के पिघला हुआ कोरियम बूंदों के रूप में इसके इष्टतम वितरण के कारण होता है। ये बूंदें जल की उपयुक्त मात्रा से घिरी होती हैं, जो सैद्धांतिक रूप से अधिकतम होती है। सदमे की लहर और आसपास के जल में पिघली हुई छोटी बूंद के बीच तात्कालिक ताप विनिमय पर वाष्पीकृत जल का संभावित द्रव्यमान। इस बहुत ही रूढ़िवादी धारणा के आधार पर, थियोफनस द्वारा अल्फा रोकथाम विफलता के लिए गणना की गई।<ref>{{cite journal |last1=Theofanous |first1=T.G. |last2=Yuen |first2=W.W. |title=अल्फा-मोड रोकथाम विफलता की संभावना|journal=Nuclear Engineering and Design |date=2 April 1995 |volume=155 |issue=1–2 |pages=459–473 |doi=10.1016/0029-5493(94)00889-7}}</ref> | ||
चूँकि, रूढ़िवादी अनुमानों के लिए उपयोग की जाने वाली ये इष्टतम स्थितियाँ वास्तविक दुनिया में नहीं होती हैं। बात के लिए, संपूर्ण पिघला हुआ रिएक्टर कोर कभी भी पूर्व-मिश्रण में नहीं होगा, बल्कि केवल इसके हिस्से के रूप में होगा, उदाहरण के लिए, पिघले हुए कोरियम के जेट के रूप में रिएक्टर के निचले प्लेनम में जल के पूल को थपथपाते हुए, अपक्षरण द्वारा विखंडन और इसके द्वारा जल के पूल के माध्यम से गिरने वाले पिघले हुए जेट के आसपास के क्षेत्र में पूर्व-मिश्रण के गठन की अनुमति देता है। वैकल्पिक रूप से, पिघल निचले प्लेनम के तल पर मोटी जेट के रूप में आ सकता है, जहां यह जल के पूल द्वारा पिघला हुआ पूल बनाता है। इस स्थिति में, पिघले हुए पूल और जल के पूल के बीच इंटरफेस पर प्रीमिक्सिंग ज़ोन बन सकता है। दोनों ही स्थितियों में, यह स्पष्ट है कि अभी तक संपूर्ण पिघला हुआ रिएक्टर इन्वेंट्री प्रीमिक्सिंग में सम्मिलित नहीं है, बल्कि केवल छोटा प्रतिशत है। रिएक्टर में जल की संतृप्त प्रकृति से और भी सीमाएँ उत्पन्न होती हैं, अर्थात्, प्रशंसनीय सुपरकूलिंग वाला जल वहाँ उपस्तिथ नहीं है। वहाँ खंडित पिघल जेट के प्रवेश के स्थिति में, इससे वाष्पीकरण में वृद्धि होती है और प्रीमिक्सचर में भाप की मात्रा बढ़ जाती है, जो जल/भाप मिश्रण में 70% से अधिक सामग्री से विस्फोट को पूरी तरह से रोकता है या कम से कम इसकी सीमा को सीमित करता है। ताकत। और प्रति-प्रभाव पिघले हुए कणों का जमना है, जो अन्य बातों के अतिरिक्त, पिघले हुए कणों के व्यास पर निर्भर करता है। अर्थात् छोटे कण बड़े की तुलना में तेजी से जमते हैं। इसके अतिरिक्त, बहने वाले मीडिया (जैसे केल्विन-हेल्महोल्ट्ज़, रेले-टेलर, कॉन्टे-माइल्स, ...) के बीच इंटरफेस में अस्थिरता वृद्धि के मॉडल विखंडन के बाद कण आकार और विखंडन माध्यम (जल) के घनत्व के अनुपात के बीच संबंध दिखाते हैं। -वाष्प मिश्रण) खंडित माध्यम के घनत्व के लिए, जिसे प्रयोगात्मक रूप से भी प्रदर्शित किया जा सकता है। कोरियम (~ 8000 किग्रा/मी³ का घनत्व) के स्थिति में, बहुत छोटी बूंदें (~ 3 - 4 मिमी) का परिणाम तब होता है जब एल्यूमिना (Al2O3) को कोरियम सिमुलेंट के रूप में उपयोग किया जाता है, जिसका घनत्व कोरियम के आधे से कम होता है। 1 - 2 सेमी की सीमा में आकार। JRC ISPRA में 200 किलोग्राम तक पिघले हुए कोरियम के द्रव्यमान के साथ JRC ISPRA में किए गए जेट विखंडन प्रयोग और 2 मीटर गहरे तक संतृप्त जल के पूल में 5 - 10 सेमी व्यास के पिघलने वाले जेट व्यास के परिणामस्वरूप केवल भाप विस्फोटों के संबंध में सफलता मिली जब Al2O3 कोरियम सिमुलेंट के रूप में उपयोग किया गया था। प्रयोगकर्ताओं की ओर से विभिन्न प्रयासों के बावजूद, FARO में कोरियम प्रयोगों में भाप विस्फोट को ट्रिगर करना संभव नहीं था। (जारी रहेगा ...) | |||
इन घटनाओं में पूर्ववर्ती सामग्री के माध्यम से दबाव की लहर के पारित होने से प्रवाह बल | इन घटनाओं में पूर्ववर्ती सामग्री के माध्यम से दबाव की लहर के पारित होने से प्रवाह बल उत्पन्न होता है जो आगे पिघलता है, जिसके परिणामस्वरूप तेजी से उष्णी हस्तांतरण होता है, और इस प्रकार लहर को बनाए रखता है। [[चेरनोबिल आपदा]] में अधिकांश भौतिक विनाश, ग्रेफाइट-संचालित, प्रकाश-जल-ठंडा [[RBMK-1000]] रिएक्टर, ऐसे भाप विस्फोट के कारण हुआ माना जाता है। | ||
परमाणु मंदी में, भाप विस्फोट का सबसे गंभीर परिणाम प्रारंभिक नियंत्रण निर्माण विफलता है। दो संभावनाएँ हैं, उच्च दाब पर पिघले हुए ईंधन का संरोधन में निष्कासन, जिसके कारण तेजी से तापन होता है; या पोत में भाप विस्फोट के कारण मिसाइल (जैसे ऊपरी सिर) की निकासी, और रोकथाम के माध्यम से। कम नाटकीय | परमाणु मंदी में, भाप विस्फोट का सबसे गंभीर परिणाम प्रारंभिक नियंत्रण निर्माण विफलता है। दो संभावनाएँ हैं, उच्च दाब पर पिघले हुए ईंधन का संरोधन में निष्कासन, जिसके कारण तेजी से तापन होता है; या पोत में भाप विस्फोट के कारण मिसाइल (जैसे ऊपरी सिर) की निकासी, और रोकथाम के माध्यम से। कम नाटकीय किन्तु फिर भी महत्वपूर्ण यह है कि ईंधन और रिएक्टर कोर का पिघला हुआ द्रव्यमान रिएक्टर भवन के फर्श से पिघलता है और [[भूजल]] तक पहुंचता है; भाप विस्फोट हो सकता है, किन्तु मलबे संभवतः समाहित हो जाएगा, और वास्तव में, छितराया जा रहा है, संभवतः अधिक आसानी से ठंडा हो जाएगा। विवरण के लिए वॉश-1400 देखें। | ||
भाप विस्फोट | भाप विस्फोट अधिकांशतः वहाँ होते हैं जहाँ उष्ण लावा समुद्र के जल या बर्फ से मिलता है। इस तरह की घटना को 'लिटरल विस्फोट' भी कहा जाता है। खतरनाक भाप विस्फोट तब भी हो सकता है जब तरल जल या बर्फ उष्ण, पिघली हुई धातु से टकराता है। जैसे ही जल भाप में फटता है, यह जलती हुई उष्णाहट को बिखेर देता हैइसके साथ तरल धातु, जिससे आस-पास स्थित किसी भी व्यक्ति को गंभीर रूप से जलने का अत्यधिक खतरा होता है और आग का खतरा उत्पन्न होता है। | ||
== व्यावहारिक उपयोग == | == व्यावहारिक उपयोग == | ||
=== बायोमास शोधन === | === बायोमास शोधन === | ||
स्टीम विस्फोटक बायोरिफाइनमेंट बायोमास को मान्य करने के लिए औद्योगिक अनुप्रयोग है। इसमें 3 एमपीए (10 वायुमंडल) तक भाप के साथ बायोमास पर दबाव डालना और बायोमास में वांछित परिवर्तन का उत्पादन करने के लिए तुरंत दबाव जारी करना | स्टीम विस्फोटक बायोरिफाइनमेंट बायोमास को मान्य करने के लिए औद्योगिक अनुप्रयोग है। इसमें 3 एमपीए (10 वायुमंडल) तक भाप के साथ बायोमास पर दबाव डालना और बायोमास में वांछित परिवर्तन का उत्पादन करने के लिए तुरंत दबाव जारी करना सम्मिलित है। पेपर फाइबर परियोजना के लिए अवधारणा का औद्योगिक अनुप्रयोग दिखाया गया है। <ref>{{cite web | url=https://www.sciencedirect.com/topics/chemistry/steam-explosion | title=Steam Explosion - an overview | ScienceDirect Topics }}</ref><ref>{{cite web | url=https://www.biooekonomie-bw.de/fachbeitrag/aktuell/einem-kreislauf-oekopapier-energie-und-duenger-aus-silphie | title=In einem Kreislauf: Ökopapier, Energie und Dünger aus Silphie }}</ref> | ||
=== भाप टर्बाइन === | === भाप टर्बाइन === | ||
जल वाष्प विस्फोट पर्यावरण की दृष्टि से हानिकारक अवशेषों के उत्पादन के बिना बड़ी मात्रा में गैस बनाता है। | जल वाष्प विस्फोट पर्यावरण की दृष्टि से हानिकारक अवशेषों के उत्पादन के बिना बड़ी मात्रा में गैस बनाता है। जल के नियंत्रित विस्फोट का उपयोग बिजलीघरों और आधुनिक प्रकार की भाप टर्बाइनों में भाप उत्पन्न करने के लिए किया गया है। नए भाप इंजन जल की बूंदों को विस्फोट करने और नियंत्रित कक्ष में उच्च दबाव बनाने के लिए उष्ण तेल का उपयोग करते हैं। तब दबाव का उपयोग टर्बाइन या परिवर्तित दहन इंजन चलाने के लिए किया जाता है। केंद्रित सौर जनरेटर में उष्ण तेल और जल के विस्फोट विशेष रूप से लोकप्रिय हो रहे हैं, जिससे कि बिना किसी बाहरी ऊर्जा के बंद लूप में जल को तेल से भिन्न किया जा सकता है। जल विस्फोट को [[पर्यावरण के अनुकूल]] माना जाता है यदि नवीकरणीय संसाधन द्वारा उष्णी उत्पन्न की जाती है। | ||
=== खाना पकाने में फ्लैश उबलना === | === खाना पकाने में फ्लैश उबलना === | ||
उबलने की प्रक्रिया को तेज करने के लिए खाना पकाने की तकनीक जिसे फ्लैश बॉइलिंग कहा जाता है, | उबलने की प्रक्रिया को तेज करने के लिए खाना पकाने की तकनीक जिसे फ्लैश बॉइलिंग कहा जाता है, जल की थोड़ी मात्रा का उपयोग करती है। उदाहरण के लिए, इस तकनीक का उपयोग हैमबर्गर पैटी पर पनीर के टुकड़े को पिघलाने के लिए किया जा सकता है। पनीर के टुकड़े को मांस के ऊपर उष्ण सतह जैसे फ्राइंग पैन पर रखा जाता है, और ठंडे जल की छोटी मात्रा को पैटी के पास की सतह पर फेंक दिया जाता है। बर्तन (जैसे बर्तन या फ्राइंग-पैन कवर) का उपयोग भाप-फ्लैश प्रतिक्रिया को जल्दी से सील करने के लिए किया जाता है, पनीर और पैटी पर उबले हुए जल को फैलाने के लिए। इसके परिणामस्वरूप ऊष्मा का बड़ा विमोचन होता है, वाष्पीकृत जल के माध्यम से तरल में वापस संघनित होता है (सिद्धांत जो [[ रेफ़्रिजरेटर |रेफ़्रिजरेटर]] और [[फ्रीजर]] उत्पादन में भी उपयोग किया जाता है)। | ||
=== अन्य उपयोग === | === अन्य उपयोग === | ||
आंतरिक दहन इंजन ईंधन को एरोसोलाइज करने के लिए फ्लैश-बॉयलिंग का उपयोग कर सकते हैं।<ref>{{cite journal |last1=Mojtabi |first1=Mehdi |last2=Wigley |first2=Graham |last3=Helie |first3=Jerome |title=गैसोलीन डायरेक्ट इंजेक्शन मल्टीस्ट्रीम इंजेक्टरों के परमाणुकरण प्रदर्शन पर फ्लैश बॉइलिंग का प्रभाव|journal=Atomization and Sprays |date=2014 |volume=24 |issue=6 |pages=467–493 |doi=10.1615/AtomizSpr.2014008296}}</ref> | आंतरिक दहन इंजन ईंधन को एरोसोलाइज करने के लिए फ्लैश-बॉयलिंग का उपयोग कर सकते हैं।<ref>{{cite journal |last1=Mojtabi |first1=Mehdi |last2=Wigley |first2=Graham |last3=Helie |first3=Jerome |title=गैसोलीन डायरेक्ट इंजेक्शन मल्टीस्ट्रीम इंजेक्टरों के परमाणुकरण प्रदर्शन पर फ्लैश बॉइलिंग का प्रभाव|journal=Atomization and Sprays |date=2014 |volume=24 |issue=6 |pages=467–493 |doi=10.1615/AtomizSpr.2014008296}}</ref> | ||
== अन्य तेजी से उबलने वाली घटनाएं == | == अन्य तेजी से उबलने वाली घटनाएं == | ||
[[File:NYC steam explosion 2.jpg|thumb|right|2007 के न्यूयॉर्क शहर में भाप विस्फोट के | [[File:NYC steam explosion 2.jpg|thumb|right|2007 के न्यूयॉर्क शहर में भाप विस्फोट के समय [[क्रिसलर बिल्डिंग]] से ऊपर उठने वाला भाप का जेट]]उच्च भाप उत्पादन दर अन्य परिस्थितियों में हो सकती है, जैसे [[ बायलर |बायलर]] -ड्रम विफलता, या शमन मोर्चे पर (उदाहरण के लिए जब जल उष्ण शुष्क बॉयलर में फिर से प्रवेश करता है)। चूंकि संभावित रूप से हानिकारक, वे सामान्यतः उन घटनाओं की तुलना में कम ऊर्जावान होते हैं जिनमें उष्ण (ईंधन) चरण पिघला हुआ होता है और इसलिए वाष्पशील (शीतलक) चरण के भीतर सूक्ष्म रूप से खंडित हो सकता है। कुछ उदाहरण अनुसरण करते हैं: | ||
भाप विस्फोट स्वाभाविक रूप से कुछ ज्वालामुखियों, विशेष रूप से [[स्ट्रैटोज्वालामुखी]] द्वारा निर्मित होते हैं, और ज्वालामुखी विस्फोटों में मानव मृत्यु का प्रमुख कारण हैं। | भाप विस्फोट स्वाभाविक रूप से कुछ ज्वालामुखियों, विशेष रूप से [[स्ट्रैटोज्वालामुखी]] द्वारा निर्मित होते हैं, और ज्वालामुखी विस्फोटों में मानव मृत्यु का प्रमुख कारण हैं। | ||
जनवरी 1961 में, ऑपरेटर त्रुटि के कारण SL-1 रिएक्टर को भाप विस्फोट में तुरंत नष्ट कर दिया गया। सोवियत संघ में 1986 की [[चेरनोबिल परमाणु आपदा]] के कारण परमाणु रिएक्टर के तहखाने के माध्यम से अवशेष अग्निशमन जल और [[भूजल]] के संपर्क में लावा जैसे [[परमाणु ईंधन]] के पिघलने पर बड़े भाप विस्फोट (और परिणामस्वरूप पूरे [[यूरोप]] में परमाणु गिरावट) होने की आशंका थी। | जनवरी 1961 में, ऑपरेटर त्रुटि के कारण SL-1 रिएक्टर को भाप विस्फोट में तुरंत नष्ट कर दिया गया। सोवियत संघ में 1986 की [[चेरनोबिल परमाणु आपदा]] के कारण परमाणु रिएक्टर के तहखाने के माध्यम से अवशेष अग्निशमन जल और [[भूजल]] के संपर्क में लावा जैसे [[परमाणु ईंधन]] के पिघलने पर बड़े भाप विस्फोट (और परिणामस्वरूप पूरे [[यूरोप]] में परमाणु गिरावट) होने की आशंका थी। जल को पंप करने और [[ ठोस |ठोस]] के साथ अंतर्निहित मिट्टी को मजबूत करने के लिए रिएक्टर के नीचे उन्मत्त [[सुरंग]] बनाने से खतरा टल गया। | ||
जब प्रेशराइज्ड कंटेनर जैसे स्टीम बॉयलर का वाटरसाइड फट जाता है, तो इसके बाद हमेशा कुछ हद तक स्टीम विस्फोट होता है। समुद्री बॉयलर के लिए सामान्य ऑपरेटिंग तापमान और दबाव लगभग होता है {{cvt|950|psi|||}} और {{convert|850|F|||}} सुपरहीटर के आउटलेट पर। स्टीम बॉयलर में स्टीम ड्रम में भाप और | जब प्रेशराइज्ड कंटेनर जैसे स्टीम बॉयलर का वाटरसाइड फट जाता है, तो इसके बाद हमेशा कुछ हद तक स्टीम विस्फोट होता है। समुद्री बॉयलर के लिए सामान्य ऑपरेटिंग तापमान और दबाव लगभग होता है {{cvt|950|psi|||}} और {{convert|850|F|||}} सुपरहीटर के आउटलेट पर। स्टीम बॉयलर में स्टीम ड्रम में भाप और जल का इंटरफ़ेस होता है, जहां उष्णी इनपुट के कारण जल अंततः वाष्पित हो रहा है, सामान्यतः तेल से चलने वाले बर्नर। जब कई कारणों से जल की नली विफल हो जाती है, तो यह बॉयलर में जल को भट्ठी क्षेत्र में खोलने से बाहर निकलने का कारण बनता है जो वायुमंडलीय दबाव से कुछ ही साई ऊपर है। यह संभवतः सभी आग बुझा देगा और बायलर के किनारों पर बड़े सतह क्षेत्र में फैल जाएगा। विनाशकारी विस्फोट की संभावना को कम करने के लिए, बॉयलर [[फायर-ट्यूब बॉयलर]] से चले गए हैं| फायर-ट्यूब डिजाइन, जहां जल के शरीर में ट्यूबों के माध्यम से उष्ण गैसों को पारित करके उष्णी को जोड़ा गया था, [[पानी-ट्यूब बॉयलर|जल-ट्यूब बॉयलर]] | वॉटर-ट्यूब बॉयलर जिसमें ट्यूब के अंदर जल होता है और भट्ठी का क्षेत्र ट्यूब के आसपास होता है। पुराने फायर-ट्यूब बॉयलर अधिकांशतः खराब निर्माण गुणवत्ता या रखरखाव की कमी के कारण विफल हो जाते हैं (जैसे कि आग ट्यूबों का क्षरण, या निरंतर विस्तार और संकुचन के कारण बॉयलर खोल की धातु की थकान)। फायर ट्यूबों की विफलता बड़ी मात्रा में उच्च दबाव, उच्च तापमान वाली भाप को सेकंड के अंश में फायर ट्यूबों के नीचे वापस लाती है और अधिकांशतः बर्नर को बॉयलर के सामने से उड़ा देती है, जबकि जल के आसपास के दबाव पोत की विफलता का कारण होगा बड़े भाप विस्फोट में बॉयलर की सामग्री का पूर्ण और संपूर्ण निकासी। समुद्री बॉयलर पर, यह निश्चित रूप से जहाज के प्रणोदन संयंत्र को नष्ट कर देगा और संभवतः जहाज के इसी छोर को। | ||
अधिक घरेलू सेटिंग में, भाप विस्फोट [[उबालना]] नामक प्रक्रिया में जलते हुए तेल को | अधिक घरेलू सेटिंग में, भाप विस्फोट [[उबालना]] नामक प्रक्रिया में जलते हुए तेल को जल से बुझाने की कोशिश का परिणाम हो सकता है। जब कड़ाही में तेल आग पर होता है, प्राकृतिक आवेग इसे जल से बुझाने के लिए हो सकता है; चूँकि, ऐसा करने से उष्ण तेल जल को सुपरहीट कर देगा। परिणामी भाप ऊपर और बाहर की ओर तेजी से और हिंसक रूप से स्प्रे में फैल जाएगी जिसमें प्रज्वलित तेल भी होगा। इस तरह की आग को बुझाने का सही विधि या तो नम कपड़े का उपयोग करना है या तवे पर तंग ढक्कन का उपयोग करना है; दोनों विधियां आग को [[ऑक्सीजन]] से वंचित करती हैं, और कपड़ा भी उसे ठंडा करता है। वैकल्पिक रूप से, गैर-वाष्पशील उद्देश्य से डिज़ाइन किया गया [[अग्निरोधी]] एजेंट या केवल आग कंबल का उपयोग किया जा सकता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 15:32, 29 June 2023
भाप विस्फोट विस्फोट है जो जल या बर्फ के भाप में तेजी से उबलने या चमकने के कारण होता है, तब होता है जब जल या बर्फ या तो अतितापित होता है, इसके भीतर उत्पन्न महीन उष्ण मलबे से तेजी से उष्ण होता है, या पिघली हुई धातुओं के संपर्क से उष्ण होता है (जैसा कि में होता है) परमाणु रिएक्टर कोर में जल के साथ पिघले हुए न्यूक्लियर-रिएक्टर ईंधन की छड़ का फ्यूल-कूलेंट इंटरेक्शन, या एफसीआई, परमाणु मंदी के बाद | कोर-मेल्टडाउन)। दाब पात्र, जैसे कि दाबित जल रिएक्टर | दाबित जल (परमाणु) रिएक्टर, जो वायुमंडलीय दाब से ऊपर संचालित होते हैं, भाप विस्फोट के लिए परिस्थितियाँ भी प्रदान कर सकते हैं। जल अत्यधिक गति से ठोस या तरल से गैस में बदलता है, मात्रा में नाटकीय रूप से वृद्धि होती है। भाप विस्फोट भाप और उबलते-उष्ण जल और उष्ण माध्यम को सभी दिशाओं में छिड़कता है (यदि अन्यथा सीमित नहीं है, उदाहरण के लिए कंटेनर की दीवारों से), जलने और जलने का खतरा उत्पन्न करता है।
भाप विस्फोट सामान्यतः रासायनिक विस्फोट नहीं होते हैं, चूंकि कई पदार्थ भाप के साथ रासायनिक रूप से प्रतिक्रिया करते हैं (उदाहरण के लिए, zirconium और सुपरहिटेड ग्रेफाइट (अशुद्ध कार्बन, सी) हाइड्रोजन (एच) देने के लिए क्रमशः भाप और वायु के साथ प्रतिक्रिया करते हैं।2), जो वायु में हाइड्रोजन सुरक्षा (ओ2) जल बनाने के लिए या एच2ओ) जिससे कि बाद में रासायनिक विस्फोट और आग लग जाए। कुछ भाप विस्फोट विशेष प्रकार के उबलते तरल विस्तार वाष्प विस्फोट (BLEVE) प्रतीत होते हैं, और संग्रहीत सुपरहीट की रिहाई पर निर्भर करते हैं। किन्तु कई बड़े पैमाने की घटनाएं, फाउंड्री दुर्घटनाओं सहित, सामग्री के माध्यम से फैलने वाली ऊर्जा-रिलीज फ्रंट के सबूत दिखाती हैं (नीचे एफसीआई का विवरण देखें), जहां बल टुकड़े बनाते हैं और उष्ण चरण को ठंडे वाष्पशील में मिलाते हैं; और मोर्चे पर तेजी से उष्णी हस्तांतरण प्रसार को बनाए रखता है।
यदि जल के तेजी से उष्ण होने के कारण जल के सीमित टैंक में भाप का विस्फोट होता है, तो दबाव की लहर और तेजी से फैलती भाप गंभीर जल के हथौड़े का कारण बन सकती है। यह वह तंत्र था, जिसके कारण 1961 में अमेरिका के इडाहो में, SL-1 परमाणु रिएक्टर पोत ऊपर से कूद गया था 9 feet (2.7 m) वायु में जब यह गंभीर दुर्घटना से नष्ट हो गया था। SL-1 के स्थिति में, ईंधन और ईंधन तत्व तात्कालिक ओवरहीटिंग से वाष्पीकृत हो जाते हैं।
इस सामान्य प्रकार की घटनाएँ भी संभव हैं यदि जल-शीतित परमाणु रिएक्टर के ईंधन और ईंधन तत्व धीरे-धीरे पिघल जाएँ। पिघली हुई कोर संरचनाओं और ईंधन के मिश्रण को अधिकांशतः कोरियम कहा जाता है। यदि ऐसा कोरियम जल के संपर्क में आता है, तो पिघले हुए ईंधन (कोरियम) और शीतलक के रूप में जल के बीच हिंसक बातचीत से वाष्प विस्फोट हो सकता है। इस तरह के विस्फोटों को फ्यूल-कूलेंट इंटरेक्शन (एफसीआई) के रूप में देखा जाता है।[1][2]
ईंधन-शीतलक अंतःक्रिया (एफसीआई) पर आधारित भाप विस्फोट की गंभीरता तथाकथित प्रीमिक्सिंग प्रक्रिया पर दृढ़ता से निर्भर करती है, जो आसपास के जल-भाप मिश्रण के साथ पिघल के मिश्रण का वर्णन करती है। सामान्यतः, भाप विस्फोट दीक्षा और शक्ति के स्थिति में जल से भरपूर प्रीमिक्स को भाप से भरपूर वातावरण की तुलना में अधिक अनुकूल माना जाता है।
पिघले हुए कोरियम के दिए गए द्रव्यमान से भाप विस्फोट की ताकत के लिए सैद्धांतिक अधिकतम, जिसे अभ्यास में कभी प्राप्त नहीं किया जा सकता है, निश्चित आकार के पिघला हुआ कोरियम बूंदों के रूप में इसके इष्टतम वितरण के कारण होता है। ये बूंदें जल की उपयुक्त मात्रा से घिरी होती हैं, जो सैद्धांतिक रूप से अधिकतम होती है। सदमे की लहर और आसपास के जल में पिघली हुई छोटी बूंद के बीच तात्कालिक ताप विनिमय पर वाष्पीकृत जल का संभावित द्रव्यमान। इस बहुत ही रूढ़िवादी धारणा के आधार पर, थियोफनस द्वारा अल्फा रोकथाम विफलता के लिए गणना की गई।[3]
चूँकि, रूढ़िवादी अनुमानों के लिए उपयोग की जाने वाली ये इष्टतम स्थितियाँ वास्तविक दुनिया में नहीं होती हैं। बात के लिए, संपूर्ण पिघला हुआ रिएक्टर कोर कभी भी पूर्व-मिश्रण में नहीं होगा, बल्कि केवल इसके हिस्से के रूप में होगा, उदाहरण के लिए, पिघले हुए कोरियम के जेट के रूप में रिएक्टर के निचले प्लेनम में जल के पूल को थपथपाते हुए, अपक्षरण द्वारा विखंडन और इसके द्वारा जल के पूल के माध्यम से गिरने वाले पिघले हुए जेट के आसपास के क्षेत्र में पूर्व-मिश्रण के गठन की अनुमति देता है। वैकल्पिक रूप से, पिघल निचले प्लेनम के तल पर मोटी जेट के रूप में आ सकता है, जहां यह जल के पूल द्वारा पिघला हुआ पूल बनाता है। इस स्थिति में, पिघले हुए पूल और जल के पूल के बीच इंटरफेस पर प्रीमिक्सिंग ज़ोन बन सकता है। दोनों ही स्थितियों में, यह स्पष्ट है कि अभी तक संपूर्ण पिघला हुआ रिएक्टर इन्वेंट्री प्रीमिक्सिंग में सम्मिलित नहीं है, बल्कि केवल छोटा प्रतिशत है। रिएक्टर में जल की संतृप्त प्रकृति से और भी सीमाएँ उत्पन्न होती हैं, अर्थात्, प्रशंसनीय सुपरकूलिंग वाला जल वहाँ उपस्तिथ नहीं है। वहाँ खंडित पिघल जेट के प्रवेश के स्थिति में, इससे वाष्पीकरण में वृद्धि होती है और प्रीमिक्सचर में भाप की मात्रा बढ़ जाती है, जो जल/भाप मिश्रण में 70% से अधिक सामग्री से विस्फोट को पूरी तरह से रोकता है या कम से कम इसकी सीमा को सीमित करता है। ताकत। और प्रति-प्रभाव पिघले हुए कणों का जमना है, जो अन्य बातों के अतिरिक्त, पिघले हुए कणों के व्यास पर निर्भर करता है। अर्थात् छोटे कण बड़े की तुलना में तेजी से जमते हैं। इसके अतिरिक्त, बहने वाले मीडिया (जैसे केल्विन-हेल्महोल्ट्ज़, रेले-टेलर, कॉन्टे-माइल्स, ...) के बीच इंटरफेस में अस्थिरता वृद्धि के मॉडल विखंडन के बाद कण आकार और विखंडन माध्यम (जल) के घनत्व के अनुपात के बीच संबंध दिखाते हैं। -वाष्प मिश्रण) खंडित माध्यम के घनत्व के लिए, जिसे प्रयोगात्मक रूप से भी प्रदर्शित किया जा सकता है। कोरियम (~ 8000 किग्रा/मी³ का घनत्व) के स्थिति में, बहुत छोटी बूंदें (~ 3 - 4 मिमी) का परिणाम तब होता है जब एल्यूमिना (Al2O3) को कोरियम सिमुलेंट के रूप में उपयोग किया जाता है, जिसका घनत्व कोरियम के आधे से कम होता है। 1 - 2 सेमी की सीमा में आकार। JRC ISPRA में 200 किलोग्राम तक पिघले हुए कोरियम के द्रव्यमान के साथ JRC ISPRA में किए गए जेट विखंडन प्रयोग और 2 मीटर गहरे तक संतृप्त जल के पूल में 5 - 10 सेमी व्यास के पिघलने वाले जेट व्यास के परिणामस्वरूप केवल भाप विस्फोटों के संबंध में सफलता मिली जब Al2O3 कोरियम सिमुलेंट के रूप में उपयोग किया गया था। प्रयोगकर्ताओं की ओर से विभिन्न प्रयासों के बावजूद, FARO में कोरियम प्रयोगों में भाप विस्फोट को ट्रिगर करना संभव नहीं था। (जारी रहेगा ...)
इन घटनाओं में पूर्ववर्ती सामग्री के माध्यम से दबाव की लहर के पारित होने से प्रवाह बल उत्पन्न होता है जो आगे पिघलता है, जिसके परिणामस्वरूप तेजी से उष्णी हस्तांतरण होता है, और इस प्रकार लहर को बनाए रखता है। चेरनोबिल आपदा में अधिकांश भौतिक विनाश, ग्रेफाइट-संचालित, प्रकाश-जल-ठंडा RBMK-1000 रिएक्टर, ऐसे भाप विस्फोट के कारण हुआ माना जाता है।
परमाणु मंदी में, भाप विस्फोट का सबसे गंभीर परिणाम प्रारंभिक नियंत्रण निर्माण विफलता है। दो संभावनाएँ हैं, उच्च दाब पर पिघले हुए ईंधन का संरोधन में निष्कासन, जिसके कारण तेजी से तापन होता है; या पोत में भाप विस्फोट के कारण मिसाइल (जैसे ऊपरी सिर) की निकासी, और रोकथाम के माध्यम से। कम नाटकीय किन्तु फिर भी महत्वपूर्ण यह है कि ईंधन और रिएक्टर कोर का पिघला हुआ द्रव्यमान रिएक्टर भवन के फर्श से पिघलता है और भूजल तक पहुंचता है; भाप विस्फोट हो सकता है, किन्तु मलबे संभवतः समाहित हो जाएगा, और वास्तव में, छितराया जा रहा है, संभवतः अधिक आसानी से ठंडा हो जाएगा। विवरण के लिए वॉश-1400 देखें।
भाप विस्फोट अधिकांशतः वहाँ होते हैं जहाँ उष्ण लावा समुद्र के जल या बर्फ से मिलता है। इस तरह की घटना को 'लिटरल विस्फोट' भी कहा जाता है। खतरनाक भाप विस्फोट तब भी हो सकता है जब तरल जल या बर्फ उष्ण, पिघली हुई धातु से टकराता है। जैसे ही जल भाप में फटता है, यह जलती हुई उष्णाहट को बिखेर देता हैइसके साथ तरल धातु, जिससे आस-पास स्थित किसी भी व्यक्ति को गंभीर रूप से जलने का अत्यधिक खतरा होता है और आग का खतरा उत्पन्न होता है।
व्यावहारिक उपयोग
बायोमास शोधन
स्टीम विस्फोटक बायोरिफाइनमेंट बायोमास को मान्य करने के लिए औद्योगिक अनुप्रयोग है। इसमें 3 एमपीए (10 वायुमंडल) तक भाप के साथ बायोमास पर दबाव डालना और बायोमास में वांछित परिवर्तन का उत्पादन करने के लिए तुरंत दबाव जारी करना सम्मिलित है। पेपर फाइबर परियोजना के लिए अवधारणा का औद्योगिक अनुप्रयोग दिखाया गया है। [4][5]
भाप टर्बाइन
जल वाष्प विस्फोट पर्यावरण की दृष्टि से हानिकारक अवशेषों के उत्पादन के बिना बड़ी मात्रा में गैस बनाता है। जल के नियंत्रित विस्फोट का उपयोग बिजलीघरों और आधुनिक प्रकार की भाप टर्बाइनों में भाप उत्पन्न करने के लिए किया गया है। नए भाप इंजन जल की बूंदों को विस्फोट करने और नियंत्रित कक्ष में उच्च दबाव बनाने के लिए उष्ण तेल का उपयोग करते हैं। तब दबाव का उपयोग टर्बाइन या परिवर्तित दहन इंजन चलाने के लिए किया जाता है। केंद्रित सौर जनरेटर में उष्ण तेल और जल के विस्फोट विशेष रूप से लोकप्रिय हो रहे हैं, जिससे कि बिना किसी बाहरी ऊर्जा के बंद लूप में जल को तेल से भिन्न किया जा सकता है। जल विस्फोट को पर्यावरण के अनुकूल माना जाता है यदि नवीकरणीय संसाधन द्वारा उष्णी उत्पन्न की जाती है।
खाना पकाने में फ्लैश उबलना
उबलने की प्रक्रिया को तेज करने के लिए खाना पकाने की तकनीक जिसे फ्लैश बॉइलिंग कहा जाता है, जल की थोड़ी मात्रा का उपयोग करती है। उदाहरण के लिए, इस तकनीक का उपयोग हैमबर्गर पैटी पर पनीर के टुकड़े को पिघलाने के लिए किया जा सकता है। पनीर के टुकड़े को मांस के ऊपर उष्ण सतह जैसे फ्राइंग पैन पर रखा जाता है, और ठंडे जल की छोटी मात्रा को पैटी के पास की सतह पर फेंक दिया जाता है। बर्तन (जैसे बर्तन या फ्राइंग-पैन कवर) का उपयोग भाप-फ्लैश प्रतिक्रिया को जल्दी से सील करने के लिए किया जाता है, पनीर और पैटी पर उबले हुए जल को फैलाने के लिए। इसके परिणामस्वरूप ऊष्मा का बड़ा विमोचन होता है, वाष्पीकृत जल के माध्यम से तरल में वापस संघनित होता है (सिद्धांत जो रेफ़्रिजरेटर और फ्रीजर उत्पादन में भी उपयोग किया जाता है)।
अन्य उपयोग
आंतरिक दहन इंजन ईंधन को एरोसोलाइज करने के लिए फ्लैश-बॉयलिंग का उपयोग कर सकते हैं।[6]
अन्य तेजी से उबलने वाली घटनाएं
उच्च भाप उत्पादन दर अन्य परिस्थितियों में हो सकती है, जैसे बायलर -ड्रम विफलता, या शमन मोर्चे पर (उदाहरण के लिए जब जल उष्ण शुष्क बॉयलर में फिर से प्रवेश करता है)। चूंकि संभावित रूप से हानिकारक, वे सामान्यतः उन घटनाओं की तुलना में कम ऊर्जावान होते हैं जिनमें उष्ण (ईंधन) चरण पिघला हुआ होता है और इसलिए वाष्पशील (शीतलक) चरण के भीतर सूक्ष्म रूप से खंडित हो सकता है। कुछ उदाहरण अनुसरण करते हैं:
भाप विस्फोट स्वाभाविक रूप से कुछ ज्वालामुखियों, विशेष रूप से स्ट्रैटोज्वालामुखी द्वारा निर्मित होते हैं, और ज्वालामुखी विस्फोटों में मानव मृत्यु का प्रमुख कारण हैं।
जनवरी 1961 में, ऑपरेटर त्रुटि के कारण SL-1 रिएक्टर को भाप विस्फोट में तुरंत नष्ट कर दिया गया। सोवियत संघ में 1986 की चेरनोबिल परमाणु आपदा के कारण परमाणु रिएक्टर के तहखाने के माध्यम से अवशेष अग्निशमन जल और भूजल के संपर्क में लावा जैसे परमाणु ईंधन के पिघलने पर बड़े भाप विस्फोट (और परिणामस्वरूप पूरे यूरोप में परमाणु गिरावट) होने की आशंका थी। जल को पंप करने और ठोस के साथ अंतर्निहित मिट्टी को मजबूत करने के लिए रिएक्टर के नीचे उन्मत्त सुरंग बनाने से खतरा टल गया।
जब प्रेशराइज्ड कंटेनर जैसे स्टीम बॉयलर का वाटरसाइड फट जाता है, तो इसके बाद हमेशा कुछ हद तक स्टीम विस्फोट होता है। समुद्री बॉयलर के लिए सामान्य ऑपरेटिंग तापमान और दबाव लगभग होता है 950 psi (6,600 kPa) और 850 °F (454 °C) सुपरहीटर के आउटलेट पर। स्टीम बॉयलर में स्टीम ड्रम में भाप और जल का इंटरफ़ेस होता है, जहां उष्णी इनपुट के कारण जल अंततः वाष्पित हो रहा है, सामान्यतः तेल से चलने वाले बर्नर। जब कई कारणों से जल की नली विफल हो जाती है, तो यह बॉयलर में जल को भट्ठी क्षेत्र में खोलने से बाहर निकलने का कारण बनता है जो वायुमंडलीय दबाव से कुछ ही साई ऊपर है। यह संभवतः सभी आग बुझा देगा और बायलर के किनारों पर बड़े सतह क्षेत्र में फैल जाएगा। विनाशकारी विस्फोट की संभावना को कम करने के लिए, बॉयलर फायर-ट्यूब बॉयलर से चले गए हैं| फायर-ट्यूब डिजाइन, जहां जल के शरीर में ट्यूबों के माध्यम से उष्ण गैसों को पारित करके उष्णी को जोड़ा गया था, जल-ट्यूब बॉयलर | वॉटर-ट्यूब बॉयलर जिसमें ट्यूब के अंदर जल होता है और भट्ठी का क्षेत्र ट्यूब के आसपास होता है। पुराने फायर-ट्यूब बॉयलर अधिकांशतः खराब निर्माण गुणवत्ता या रखरखाव की कमी के कारण विफल हो जाते हैं (जैसे कि आग ट्यूबों का क्षरण, या निरंतर विस्तार और संकुचन के कारण बॉयलर खोल की धातु की थकान)। फायर ट्यूबों की विफलता बड़ी मात्रा में उच्च दबाव, उच्च तापमान वाली भाप को सेकंड के अंश में फायर ट्यूबों के नीचे वापस लाती है और अधिकांशतः बर्नर को बॉयलर के सामने से उड़ा देती है, जबकि जल के आसपास के दबाव पोत की विफलता का कारण होगा बड़े भाप विस्फोट में बॉयलर की सामग्री का पूर्ण और संपूर्ण निकासी। समुद्री बॉयलर पर, यह निश्चित रूप से जहाज के प्रणोदन संयंत्र को नष्ट कर देगा और संभवतः जहाज के इसी छोर को।
अधिक घरेलू सेटिंग में, भाप विस्फोट उबालना नामक प्रक्रिया में जलते हुए तेल को जल से बुझाने की कोशिश का परिणाम हो सकता है। जब कड़ाही में तेल आग पर होता है, प्राकृतिक आवेग इसे जल से बुझाने के लिए हो सकता है; चूँकि, ऐसा करने से उष्ण तेल जल को सुपरहीट कर देगा। परिणामी भाप ऊपर और बाहर की ओर तेजी से और हिंसक रूप से स्प्रे में फैल जाएगी जिसमें प्रज्वलित तेल भी होगा। इस तरह की आग को बुझाने का सही विधि या तो नम कपड़े का उपयोग करना है या तवे पर तंग ढक्कन का उपयोग करना है; दोनों विधियां आग को ऑक्सीजन से वंचित करती हैं, और कपड़ा भी उसे ठंडा करता है। वैकल्पिक रूप से, गैर-वाष्पशील उद्देश्य से डिज़ाइन किया गया अग्निरोधी एजेंट या केवल आग कंबल का उपयोग किया जा सकता है।
यह भी देखें
- रुके
- बॉयलर फटना
- मल्टीफ़ेज़ प्रवाह
- 2007 न्यूयॉर्क शहर भाप विस्फोट
- चेरनोबिल आपदा
ग्रन्थसूची
- Triggered Steam Explosions Archived 2016-03-03 at the Wayback Machine by Lloyd S. Nelson, Paul W. Brooks, Riccardo Bonazza and Michael L. Corradini ... Kjetil Hildal
संदर्भ
- ↑ Theofanous, T.G.; Najafi, B.; Rumble, E. (1987). "An Assessment of Steam-Explosion-Induced Containment Failure. Part I: Probabilistic Aspects". Nuclear Science and Engineering. 97 (4): 259–281. Bibcode:1987NSE....97..259T. doi:10.13182/NSE87-A23512.
- ↑ Magallon, D. (2009). "हल्के जल रिएक्टरों में वाष्प विस्फोट मुद्दे के समाधान की स्थिति और संभावनाएँ". Nuclear Engineering and Technology. 41 (5): 603–616. doi:10.5516/NET.2009.41.5.603.
- ↑ Theofanous, T.G.; Yuen, W.W. (2 April 1995). "अल्फा-मोड रोकथाम विफलता की संभावना". Nuclear Engineering and Design. 155 (1–2): 459–473. doi:10.1016/0029-5493(94)00889-7.
- ↑ "Steam Explosion - an overview | ScienceDirect Topics".
- ↑ "In einem Kreislauf: Ökopapier, Energie und Dünger aus Silphie".
- ↑ Mojtabi, Mehdi; Wigley, Graham; Helie, Jerome (2014). "गैसोलीन डायरेक्ट इंजेक्शन मल्टीस्ट्रीम इंजेक्टरों के परमाणुकरण प्रदर्शन पर फ्लैश बॉइलिंग का प्रभाव". Atomization and Sprays. 24 (6): 467–493. doi:10.1615/AtomizSpr.2014008296.