Y-Δ रूपांतरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 6: Line 6:


== नाम ==
== नाम ==
[[File:Theoreme de kennelly2.svg|thumb|300x300px|इसके T-Π प्रतिनिधित्व में रूपांतरण का चित्रण।]]Y-Δ परिवर्तन को कई अन्य नामों से जाना जाता है, जो ज्यादातर शामिल दो आकृतियों पर आधारित होते हैं, जो किसी भी क्रम में सूचीबद्ध होते हैं। वाई, जिसे वाई के रूप में लिखा गया है, को टी या स्टार भी कहा जा सकता है; Δ, जिसे डेल्टा के रूप में लिखा जाता है, को त्रिभुज, पाई (अक्षर)|Π (पी के रूप में वर्तनी), या जाल भी कहा जा सकता है। इस प्रकार, रूपांतरण के सामान्य नामों में वाई-डेल्टा या डेल्टा-वाई, स्टार-डेल्टा, स्टार-मेश, या टीशामिल हैं।  
[[File:Theoreme de kennelly2.svg|thumb|300x300px|इसके T-Π प्रतिनिधित्व में रूपांतरण का चित्रण।]]'''Y-Δ रूपांतरण''' को कई अन्य नामों से भी जाना जाता है, जो अधिकांशतः किसी भी क्रम में सूचीबद्ध दो आकृतियों पर आधारित होते हैं। '''Y''' के रूप में वर्णित '''वाई''' को '''T''' या '''स्टार''' भी कहा जा सकता है; '''डेल्टा''' के रूप में लिखे गए '''Δ''' को त्रिभुज '''Π''' ('''पाई''' के रूप में वर्णित) या '''जाल''' भी कहा जा सकता है। इस प्रकार, रूपांतरण के सामान्य नामों में '''वाई-डेल्टा''' या '''डेल्टा-वाई''', '''स्टार-डेल्टा''', '''स्टार-मेश''', या '''T''' सम्मिलित हैं।  
== बेसिक वाईपरिवर्तन ==
== मूल Yरूपांतरण ==
[[Image:Wye-delta-2.svg|right|thumb|300px|इस आलेख में उपयोग किए जाने वाले लेबल के साथ Δ और वाई परिपथ।]]परिवर्तन का उपयोग तीन टर्मिनलों वाले नेटवर्क के लिए समानता स्थापित करने के लिए किया जाता है। जहां तीन तत्व एक सामान्य नोड पर समाप्त होते हैं और कोई भी स्रोत नहीं होता है, तो प्रतिबाधाओं को बदलकर नोड को समाप्त कर दिया जाता है। तुल्यता के लिए, टर्मिनलों के किसी भी जोड़े के बीच प्रतिबाधा दोनों नेटवर्कों के लिए समान होनी चाहिए। यहां दिए गए समीकरण जटिल के साथ-साथ वास्तविक प्रतिबाधाओं के लिए मान्य हैं। [[जटिल प्रतिबाधा]] [[ओम]] में मापी गई एक मात्रा है जो सामान्य तरीके से सकारात्मक वास्तविक संख्या के रूप में प्रतिरोध का प्रतिनिधित्व करती है, और सकारात्मक और नकारात्मक [[काल्पनिक मूल्य]]ों के रूप में [[विद्युत प्रतिक्रिया]] का भी प्रतिनिधित्व करती है।
[[Image:Wye-delta-2.svg|right|thumb|300px|इस लेख में उपयोग किए जाने वाले लेबल के साथ Δ और Y परिपथ।]]रूपांतरण का उपयोग तीन टर्मिनलों वाले नेटवर्क में समानता स्थापित करने के लिए किया जाता है। जहां तीन तत्व सामान्य नोड पर समाप्त होते हैं और कोई भी स्रोत नहीं होता है, तब प्रतिबाधाओं को परिवर्तित कर नोड को समाप्त कर दिया जाता है। तुल्यता के लिए, टर्मिनलों के किसी भी जोड़े के मध्य प्रतिबाधा दोनों नेटवर्कों के लिए समान होनी चाहिए। यहां दिए गए समीकरण जटिल के साथ वास्तविक प्रतिबाधाओं के लिए भी मान्य होते हैं। [[जटिल प्रतिबाधा]] [[ओम]] में मापी गई एक मात्रा है जो सामान्य तरीके से सकारात्मक वास्तविक संख्या के रूप में प्रतिरोध का प्रतिनिधित्व करती है, और सकारात्मक और नकारात्मक [[काल्पनिक मूल्य]]ों के रूप में [[विद्युत प्रतिक्रिया]] का भी प्रतिनिधित्व करती है।


=== Δ से Y === में परिवर्तन के लिए समीकरण<!--This section is linked from [[Template:Network analysis navigation]]. Changing this heading will break the template unless updated there also.-->
=== Δ से Y === में परिवर्तन के लिए समीकरण<!--This section is linked from [[Template:Network analysis navigation]]. Changing this heading will break the template unless updated there also.-->
Line 48: Line 48:
# <math>0,\frac{1}{3}\left(I_2 - I_3\right),  -\frac{1}{3}\left(I_2 - I_3\right)</math> और
# <math>0,\frac{1}{3}\left(I_2 - I_3\right),  -\frac{1}{3}\left(I_2 - I_3\right)</math> और
# <math> -\frac{1}{3}\left(I_3 - I_1\right), 0, \frac{1}{3}\left(I_3 - I_1\right)</math>
# <math> -\frac{1}{3}\left(I_3 - I_1\right), 0, \frac{1}{3}\left(I_3 - I_1\right)</math>
किरचॉफ के परिपथ कानूनों का उपयोग करके समानता को आसानी से दिखाया जा सकता है <math>I_1 + I_2 + I_3 = 0</math>. अब प्रत्येक समस्या अपेक्षाकृत सरल है, क्योंकि इसमें केवल एक आदर्श वर्तमान स्रोत शामिल है। प्रत्येक समस्या के लिए नोड्स पर बिल्कुल समान परिणाम वोल्टेज प्राप्त करने के लिए, दो परिपथों में समतुल्य प्रतिरोध समान होना चाहिए, यह श्रृंखला और समांतर परिपथ के बुनियादी नियमों का उपयोग करके आसानी से पाया जा सकता है:
किरचॉफ के परिपथ कानूनों का उपयोग करके समानता को आसानी से दिखाया जा सकता है <math>I_1 + I_2 + I_3 = 0</math>. अब प्रत्येक समस्या अपेक्षाकृत सरल है, क्योंकि इसमें केवल एक आदर्श वर्तमान स्रोत सम्मिलित है। प्रत्येक समस्या के लिए नोड्स पर बिल्कुल समान परिणाम वोल्टेज प्राप्त करने के लिए, दो परिपथों में समतुल्य प्रतिरोध समान होना चाहिए, यह श्रृंखला और समांतर परिपथ के बुनियादी नियमों का उपयोग करके आसानी से पाया जा सकता है:


:<math>
:<math>

Revision as of 13:14, 17 June 2023

विद्युत अभियन्त्रण में Y-Δ रूपांतरण को वाई-डेल्टा भी लिखा जाता है और इसे कई अन्य नामों से भी जाना जाता है, यह विद्युत नेटवर्क के विश्लेषण को सरल बनाने के लिए गणितीय तकनीक है। यह नाम परिपथ आरेखों की आकृति से प्राप्त होता है, जो क्रमशः अक्षर Y और ग्रीक कैपिटल लेटर Δ की भाँति दिखता हैं। यह परिपथ परिवर्तन सिद्धांत 1899 में आर्थर एडविन केनेली द्वारा प्रकाशित किया गया था।[1] यह तीन-चरण विद्युत शक्ति परिपथ के विश्लेषण में व्यापक रूप से उपयोग किया जाता है।

Y-Δ रूपांतरण को तीन प्रतिरोधों के लिए स्टार-मेश रूपांतरण की विशेष स्थिति माना जा सकता है। गणित में, Y-Δ रूपांतरण वृत्तीय तलीय रेखांकन के सिद्धांत में महत्वपूर्ण भूमिका निभाता है।[2]


नाम

इसके T-Π प्रतिनिधित्व में रूपांतरण का चित्रण।

Y-Δ रूपांतरण को कई अन्य नामों से भी जाना जाता है, जो अधिकांशतः किसी भी क्रम में सूचीबद्ध दो आकृतियों पर आधारित होते हैं। Y के रूप में वर्णित वाई को T या स्टार भी कहा जा सकता है; डेल्टा के रूप में लिखे गए Δ को त्रिभुज Π (पाई के रूप में वर्णित) या जाल भी कहा जा सकता है। इस प्रकार, रूपांतरण के सामान्य नामों में वाई-डेल्टा या डेल्टा-वाई, स्टार-डेल्टा, स्टार-मेश, या T-Π सम्मिलित हैं।

मूल Y-Δ रूपांतरण

इस लेख में उपयोग किए जाने वाले लेबल के साथ Δ और Y परिपथ।

रूपांतरण का उपयोग तीन टर्मिनलों वाले नेटवर्क में समानता स्थापित करने के लिए किया जाता है। जहां तीन तत्व सामान्य नोड पर समाप्त होते हैं और कोई भी स्रोत नहीं होता है, तब प्रतिबाधाओं को परिवर्तित कर नोड को समाप्त कर दिया जाता है। तुल्यता के लिए, टर्मिनलों के किसी भी जोड़े के मध्य प्रतिबाधा दोनों नेटवर्कों के लिए समान होनी चाहिए। यहां दिए गए समीकरण जटिल के साथ वास्तविक प्रतिबाधाओं के लिए भी मान्य होते हैं। जटिल प्रतिबाधा ओम में मापी गई एक मात्रा है जो सामान्य तरीके से सकारात्मक वास्तविक संख्या के रूप में प्रतिरोध का प्रतिनिधित्व करती है, और सकारात्मक और नकारात्मक काल्पनिक मूल्यों के रूप में विद्युत प्रतिक्रिया का भी प्रतिनिधित्व करती है।

=== Δ से Y === में परिवर्तन के लिए समीकरण सामान्य विचार प्रतिबाधा की गणना करना है प्रतिबाधा के साथ वाई परिपथ के टर्मिनल नोड पर , द्वारा Δ परिपथ में आसन्न नोड्स के लिए

कहाँ सभी Δ परिपथ में प्रतिबाधा हैं। इससे विशिष्ट सूत्र प्राप्त होता है


===Y से Δ=== में परिवर्तन के लिए समीकरण सामान्य विचार एक प्रतिबाधा की गणना करना है Δ परिपथ में द्वारा

कहाँ वाई परिपथ में प्रतिबाधा के सभी जोड़े के उत्पादों का योग है और वाई परिपथ में नोड का प्रतिबाधा है जो किनारे के विपरीत है . व्यक्तिगत किनारों के सूत्र इस प्रकार हैं

या, अगर प्रतिरोध के बजाय प्रवेश का उपयोग कर रहे हैं:

ध्यान दें कि प्रवेश का उपयोग करके Y से Δ में सामान्य सूत्र प्रतिरोध का उपयोग करके Δ से Y के समान है।

परिवर्तन के अस्तित्व और विशिष्टता का प्रमाण

सुपरपोजिशन प्रमेय के परिणाम के रूप में परिवर्तन की व्यवहार्यता दिखायी जा सकती है। अधिक सामान्य स्टार-जाल परिवर्तन के परिणाम के रूप में प्राप्त एक के बजाय एक संक्षिप्त प्रमाण निम्नानुसार दिया जा सकता है। समतुल्यता इस कथन में निहित है कि किसी भी बाहरी वोल्टेज के लिए ( और ) तीन नोड्स पर आवेदन ( और ), संबंधित धाराएं ( और ) Y और Δ परिपथ दोनों के लिए बिल्कुल समान हैं, और इसके विपरीत। इस प्रमाण में, हम नोड्स पर दी गई बाहरी धाराओं से शुरू करते हैं। सुपरपोज़िशन प्रमेय के अनुसार, करंट के साथ तीन नोड्स पर लागू निम्नलिखित तीन समस्याओं के नोड्स पर परिणामी वोल्टेज के सुपरपोज़िशन का अध्ययन करके वोल्टेज प्राप्त किया जा सकता है:

  1. और

किरचॉफ के परिपथ कानूनों का उपयोग करके समानता को आसानी से दिखाया जा सकता है . अब प्रत्येक समस्या अपेक्षाकृत सरल है, क्योंकि इसमें केवल एक आदर्श वर्तमान स्रोत सम्मिलित है। प्रत्येक समस्या के लिए नोड्स पर बिल्कुल समान परिणाम वोल्टेज प्राप्त करने के लिए, दो परिपथों में समतुल्य प्रतिरोध समान होना चाहिए, यह श्रृंखला और समांतर परिपथ के बुनियादी नियमों का उपयोग करके आसानी से पाया जा सकता है:

हालांकि आम तौर पर छह समीकरण तीन चरों को व्यक्त करने के लिए पर्याप्त से अधिक होते हैं () अन्य तीन चर की अवधि में (), यहाँ यह दिखाना सीधा है कि ये समीकरण वास्तव में उपरोक्त डिज़ाइन किए गए भावों की ओर ले जाते हैं।

वास्तव में, सुपरपोजिशन प्रमेय प्रतिरोधों के मूल्यों के बीच संबंध स्थापित करता है, विद्युत चुंबकत्व विशिष्टता प्रमेय ऐसे समाधान की विशिष्टता की गारंटी देता है।

नेटवर्क का सरलीकरण

दो टर्मिनलों के बीच प्रतिरोधक नेटवर्क सैद्धांतिक रूप से समतुल्य प्रतिबाधा हो सकता है जो एक समतुल्य अवरोधक में बदल जाता है (आमतौर पर, वही प्रतिबाधा के लिए सही है)। श्रृंखला और समानांतर परिवर्तन ऐसा करने के लिए बुनियादी उपकरण हैं, लेकिन जटिल नेटवर्क जैसे कि यहां दिखाए गए पुल के लिए, वे पर्याप्त नहीं हैं।

Y-Δ परिवर्तन का उपयोग एक समय में एक नोड को खत्म करने और एक नेटवर्क बनाने के लिए किया जा सकता है जिसे आगे सरलीकृत किया जा सकता है, जैसा कि दिखाया गया है।

नोड डी को खत्म करने के लिए वाई-Δ ट्रांसफॉर्म का उपयोग करके एक पुल प्रतिरोधी नेटवर्क का परिवर्तन, एक समकक्ष नेटवर्क उत्पन्न करता है जिसे आसानी से और सरल बनाया जा सकता है।

रिवर्स ट्रांसफ़ॉर्मेशन, Δ-Y, जो एक नोड जोड़ता है, अक्सर आगे सरलीकरण के लिए मार्ग प्रशस्त करने के लिए आसान होता है।

Δ-Y ट्रांस्फ़ॉर्म का उपयोग करके एक ब्रिज रेसिस्टर नेटवर्क का रूपांतरण भी एक समतुल्य नेटवर्क उत्पन्न करता है जिसे आसानी से और सरल बनाया जा सकता है।

प्लानर ग्राफ द्वारा प्रस्तुत प्रत्येक दो-टर्मिनल नेटवर्क को श्रृंखला, समांतर, वाई-Δ, और Δ-वाई परिवर्तनों के अनुक्रम द्वारा एक समकक्ष प्रतिरोधी में कम किया जा सकता है।[3] हालाँकि, गैर-प्लानर नेटवर्क हैं जिन्हें इन परिवर्तनों का उपयोग करके सरल नहीं किया जा सकता है, जैसे कि एक टोरस्र्स के चारों ओर लिपटा एक नियमित वर्ग ग्रिड, या पीटरसन परिवार का कोई सदस्य।

ग्राफ सिद्धांत

ग्राफ़ सिद्धांत में, Y-Δ परिवर्तन का अर्थ है ग्राफ़ सिद्धांत के Y शब्दावली को बदलना # समतुल्य Δ सबग्राफ के साथ एक ग्राफ़ के सबग्राफ। परिवर्तन एक ग्राफ़ में किनारों की संख्या को संरक्षित करता है, लेकिन शीर्षों की संख्या या चक्र (ग्राफ़ सिद्धांत) की संख्या को नहीं। दो ग्राफ़ को Y-Δ समतुल्य कहा जाता है यदि एक को दूसरे से Y-Δ की श्रृंखला द्वारा किसी भी दिशा में प्राप्त किया जा सकता है। उदाहरण के लिए, पीटरसन परिवार एक Y-Δ समतुल्य वर्ग है।

प्रदर्शन

Δ-लोड टू वाई-लोड रूपांतरण समीकरण

इस आलेख में उपयोग किए जाने वाले लेबल के साथ Δ और Y परिपथ।

संबंधित करने के लिए Δ से वाई से, दो संबंधित नोड्स के बीच प्रतिबाधा की तुलना की जाती है। किसी भी विन्यास में प्रतिबाधा निर्धारित की जाती है जैसे कि नोड्स में से एक को परिपथ से काट दिया जाता है।

N के बीच प्रतिबाधा1 और n2 एन के साथ3 Δ में डिस्कनेक्ट किया गया:

सरल करने के लिए, चलो का योग हो .

इस प्रकार,

N के बीच संगत प्रतिबाधा1 और n2 वाई में सरल है:

इस तरह:

(1)

के लिए दोहराया जा रहा है :

(2)

और के लिए :

(3)

यहाँ से, के मान रैखिक संयोजन (जोड़ और/या घटाव) द्वारा निर्धारित किया जा सकता है।

उदाहरण के लिए, (1) और (3) को जोड़ने पर (2) को घटाने पर प्राप्त होता है

संपूर्णता के लिए:

(4)
(5)
(6)

वाई-लोड से Δ-लोड परिवर्तन समीकरण

होने देना

.

हम Δ से Y समीकरण को इस प्रकार लिख सकते हैं

  (1)
  (2)
(3)

समीकरणों के युग्मों को गुणा करने पर प्राप्त होता है

  (4)
  (5)
(6)

और इन समीकरणों का योग है

(7)

कारक दाहिनी ओर से, जा रहा है अंश में, एक के साथ रद्द करना भाजक में।

(8)

(8) और {(1), (2), (3)} के बीच समानता पर ध्यान दें

(8) को (1) से विभाजित करें

जिसके लिए समीकरण है . (8) को (2) या (3) से विभाजित करना (के लिए भाव या ) शेष समीकरण देता है।

==Δ एक व्यावहारिक जनरेटर == के वाई परिवर्तन के लिए

संतुलित तीन चरण विद्युत शक्ति के विश्लेषण के दौरान तीन चरण विद्युत शक्ति प्रणाली, आमतौर पर इसकी सादगी के कारण प्रति चरण (या एकल चरण) परिपथ का विश्लेषण किया जाता है। उसके लिए, बिजली पैदा करने वाला , ट्रांसफार्मर, लोड और एसी मोटर के लिए समतुल्य वाई कनेक्शन का उपयोग किया जाता है। व्यावहारिक डेल्टा से जुड़े तीन-चरण जनरेटर के स्टेटर वाइंडिंग, निम्नलिखित आंकड़े में दिखाए गए हैं, निम्नलिखित छः सूत्रों का उपयोग करके समकक्ष वाई-कनेक्टेड जेनरेटर में परिवर्तित किया जा सकता है[lower-alpha 1]:

डेल्टा/त्रिकोण/पीआई में जुड़ा व्यावहारिक जनरेटर। दिखाई गई मात्राएँ फेजर वोल्टेज और जटिल प्रतिबाधा हैं। इसका विस्तार करने के लिए छवि पर क्लिक करें।

परिणामी नेटवर्क निम्नलिखित है। समतुल्य नेटवर्क का तटस्थ नोड काल्पनिक है, और इसलिए लाइन-टू-न्यूट्रल फेजर वोल्टेज हैं। परिवर्तन के दौरान, लाइन फेजर धाराएं और लाइन (या लाइन-टू-लाइन या चरण-दर-चरण) फेजर वोल्टेज परिवर्तित नहीं होते हैं।

वाई/स्टार/टी में जुड़ा समतुल्य व्यावहारिक जनरेटर। इसका विस्तार करने के लिए छवि पर क्लिक करें।

यदि वास्तविक डेल्टा जनरेटर संतुलित है, जिसका अर्थ है कि आंतरिक फेजर वोल्टेज में समान परिमाण है और एक दूसरे के बीच 120 ° द्वारा चरण-स्थानांतरित किया जाता है और तीन जटिल प्रतिबाधाएं समान हैं, तो पिछले सूत्र निम्नलिखित चार तक कम हो जाते हैं:

जहां अंतिम तीन समीकरणों के लिए, पहले चिह्न (+) का उपयोग किया जाता है यदि चरण अनुक्रम धनात्मक/एबीसी है या दूसरा चिह्न (-) का उपयोग किया जाता है यदि चरण अनुक्रम ऋणात्मक/एसीबी है।

यह भी देखें

  • स्टार-जाल परिवर्तन
  • नेटवर्क विश्लेषण (विद्युत परिपथ)
  • विद्युत नेटवर्क, तीन-चरण विद्युत शक्ति | तीन-चरण शक्ति, वाई और Δ कनेक्शन के उदाहरणों के लिए पॉलीफ़ेज़ सिस्टम
  • Y-Δ स्टार्टिंग तकनीक की चर्चा के लिए AC मोटर

संदर्भ

  1. Kennelly, A. E. (1899). "संचालन नेटवर्क में त्रिकोण और तीन-नुकीले तारों की समानता". Electrical World and Engineer. 34: 413–414.
  2. Curtis, E.B.; Ingerman, D.; Morrow, J.A. (1998). "सर्कुलर प्लानर ग्राफ और रेसिस्टर नेटवर्क". Linear Algebra and Its Applications. 283 (1–3): 115–150. doi:10.1016/S0024-3795(98)10087-3.
  3. Truemper, K. (1989). "प्लानर ग्राफ के लिए डेल्टा-वाई कमी पर". Journal of Graph Theory. 13 (2): 141–148. doi:10.1002/jgt.3190130202.


टिप्पणियाँ

  1. For a demonstration, read the Talk page.


ग्रन्थसूची

  • William Stevenson, Elements of Power System Analysis 3rd ed., McGraw Hill, New York, 1975, ISBN 0-07-061285-4


बाहरी संबंध