दो आयामों में अक्षों का घूर्णन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
{{broader|दो आयामों में घुमाव}}
{{broader|दो आयामों में घुमाव}}


गणित में, दो आयामों में अक्षों का घूर्णन xy-[[कार्तीय समन्वय प्रणाली]] से x'y'-कार्तीय समन्वय प्रणाली का मानचित्रण (गणित) है जिसमें मूल को स्थिर (गणित) रखा जाता है और x' और y' अक्षों को घूर्णन करके प्राप्त किया जाता है। x और y कुल्हाड़ियों को <math> \theta </math> कोण से वामावर्त घुमाते हैं। बिंदु P में मूल प्रणाली के संबंध में निर्देशांक (x, y) हैं और नई प्रणाली के संबंध में निर्देशांक (x′, y′) हैं।<ref>{{harvtxt|Protter|Morrey|1970|p=320}}</ref> नई समन्वय प्रणाली में, बिंदु P को विपरीत दिशा में घुमाया गया प्रतीत होगा, अर्थात, कोण <math> \theta </math> के माध्यम से दक्षिणावर्त। दो से अधिक आयामों में अक्षों का घूर्णन समान रूप से परिभाषित किया गया है।<ref>{{harvtxt|Anton|1987|p=231}}</ref><ref>{{harvtxt|Burden|Faires|1993|p=532}}</ref> कुल्हाड़ियों का घूर्णन रेखीय नक्शा<ref>{{harvtxt|Anton|1987|p=247}}</ref><ref>{{harvtxt|Beauregard|Fraleigh|1973|p=266}}</ref> और [[कठोर परिवर्तन]] है।
गणित में, दो आयामों में अक्षों का घूर्णन xy-[[कार्तीय समन्वय प्रणाली]] से x'y'-कार्तीय समन्वय प्रणाली का मानचित्रण (गणित) है जिसमें मूल को स्थिर (गणित) रखा जाता है और x' और y' अक्षों को घूर्णन करके प्राप्त किया जाता है। x और y कुल्हाड़ियों को <math> \theta </math> कोण से वामावर्त घुमाते हैं। बिंदु P में मूल प्रणाली के संबंध में निर्देशांक (x, y) हैं और नई प्रणाली के संबंध में निर्देशांक (x′, y′) हैं।<ref>{{harvtxt|Protter|Morrey|1970|p=320}}</ref> नई समन्वय प्रणाली में, बिंदु P को विपरीत दिशा में घुमाया गया प्रतीत होगा, अर्थात, कोण <math> \theta </math> के माध्यम से दक्षिणावर्त। दो से अधिक आयामों में अक्षों का घूर्णन समान रूप से परिभाषित किया गया है।<ref>{{harvtxt|Anton|1987|p=231}}</ref><ref>{{harvtxt|Burden|Faires|1993|p=532}}</ref> कुल्हाड़ियों का घूर्णन रेखीय नक्शा<ref>{{harvtxt|Anton|1987|p=247}}</ref><ref>{{harvtxt|Beauregard|Fraleigh|1973|p=266}}</ref> और [[कठोर परिवर्तन]] है।


== प्रेरणा ==
== प्रेरणा ==
Line 11: Line 11:


== व्युत्पत्ति ==
== व्युत्पत्ति ==
दो आयामों में परिवर्तन को परिभाषित करने वाले समीकरण, जो xy कुल्हाड़ियों को कोण <math> \theta </math> के माध्यम से x'y' अक्षों में वामावर्त घुमाते हैं, निम्नानुसार व्युत्पन्न होते हैं।
दो आयामों में परिवर्तन को परिभाषित करने वाले समीकरण, जो xy कुल्हाड़ियों को कोण <math> \theta </math> के माध्यम से x'y' अक्षों में वामावर्त घुमाते हैं, निम्नानुसार व्युत्पन्न होते हैं।


xy प्रणाली में, बिंदु P के ध्रुवीय निर्देशांक <math> (r, \alpha) </math> हैं। फिर, x′y′ प्रणाली में, P के ध्रुवीय निर्देशांक होंगे <math> (r, \alpha - \theta) </math>.
xy प्रणाली में, बिंदु P के ध्रुवीय निर्देशांक <math> (r, \alpha) </math> हैं। फिर, x′y′ प्रणाली में, P के ध्रुवीय निर्देशांक होंगे <math> (r, \alpha - \theta) </math>.
Line 86: Line 86:
{{NumBlk||<math display="block"> Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 </math> {{spaces|4}} (<math>A, B, C</math> not all zero).<ref>{{harvtxt|Protter|Morrey|1970|p=316}}</ref>|{{EquationRef|9}}}}
{{NumBlk||<math display="block"> Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 </math> {{spaces|4}} (<math>A, B, C</math> not all zero).<ref>{{harvtxt|Protter|Morrey|1970|p=316}}</ref>|{{EquationRef|9}}}}


निर्देशांकों में परिवर्तन (अक्षों का घूर्णन और अक्षों का अनुवाद) के माध्यम से, समीकरण ({{EquationNote|9}}) को मानक रूप में रखा जा सकता है, जिसके साथ काम करना सामान्यतः से आसान होता है। x′y′ पद को समाप्त करने के लिए निर्देशांकों को विशिष्ट कोण पर घुमाना सदैव संभव होता है। समीकरण ({{EquationNote|7}}) और ({{EquationNote|8}}) को समीकरण ({{EquationNote|9}}) में प्रतिस्थापित करने पर, हम प्राप्त करते हैं
निर्देशांकों में परिवर्तन (अक्षों का घूर्णन और अक्षों का अनुवाद) के माध्यम से, समीकरण ({{EquationNote|9}}) को मानक रूप में रखा जा सकता है, जिसके साथ काम करना सामान्यतः से आसान होता है। x′y′ पद को समाप्त करने के लिए निर्देशांकों को विशिष्ट कोण पर घुमाना सदैव संभव होता है। समीकरण ({{EquationNote|7}}) और ({{EquationNote|8}}) को समीकरण ({{EquationNote|9}}) में प्रतिस्थापित करने पर, हम प्राप्त करते हैं
{{NumBlk||<math display="block"> A'x'^2 + B'x'y' + C'y'^2 + D'x' + E'y' + F' = 0 ,</math>|{{EquationRef|10}}}}
{{NumBlk||<math display="block"> A'x'^2 + B'x'y' + C'y'^2 + D'x' + E'y' + F' = 0 ,</math>|{{EquationRef|10}}}}
जहाँ{{NumBlk||
जहाँ{{NumBlk||
Line 101: Line 101:
जब शून्य से भिन्न सभी बी, डी और ई के साथ कोई समस्या उत्पन्न होती है, तो उन्हें उत्तराधिकार में रोटेशन (बी को हटाकर) और अनुवाद (डी और ई शब्दों को हटाकर) करके समाप्त किया जा सकता है।<ref>{{harvtxt|Protter|Morrey|1970|p=324}}</ref>
जब शून्य से भिन्न सभी बी, डी और ई के साथ कोई समस्या उत्पन्न होती है, तो उन्हें उत्तराधिकार में रोटेशन (बी को हटाकर) और अनुवाद (डी और ई शब्दों को हटाकर) करके समाप्त किया जा सकता है।<ref>{{harvtxt|Protter|Morrey|1970|p=324}}</ref>
=== घुमाए गए शांकव वर्गों की पहचान करना ===
=== घुमाए गए शांकव वर्गों की पहचान करना ===
समीकरण ({{EquationNote|9}}) द्वारा दिए गए गैर-पतित शांकव खंड को <math>B^2-4AC</math> का मूल्यांकन करके पहचाना जा सकता है। शांकव खंड है: <ref>{{harvtxt|Protter|Morrey|1970|p=326}}</ref>
समीकरण ({{EquationNote|9}}) द्वारा दिए गए गैर-पतित शांकव खंड को <math>B^2-4AC</math> का मूल्यांकन करके पहचाना जा सकता है। शांकव खंड है: <ref>{{harvtxt|Protter|Morrey|1970|p=326}}</ref>
*दीर्घवृत्त या वृत्त, यदि <math> B^2-4AC<0</math>;
*दीर्घवृत्त या वृत्त, यदि <math> B^2-4AC<0</math>;
* परबोला, यदि <math> B^2-4AC=0</math>;
* परबोला, यदि <math> B^2-4AC=0</math>;
Line 107: Line 107:


== कई आयामों का सामान्यीकरण ==
== कई आयामों का सामान्यीकरण ==
मान लीजिए कि आयताकार xyz-निर्देशांक प्रणाली अपने z अक्ष के चारों ओर वामावर्त (धनात्मक z अक्ष को नीचे की ओर देखते हुए) कोण <math> \theta </math> के माध्यम से घुमाई जाती है, अर्थात धनात्मक x अक्ष को धनात्मक y अक्ष में तुरंत घुमाया जाता है। प्रत्येक बिंदु का z निर्देशांक अपरिवर्तित है और x और y निर्देशांक ऊपर के रूप में रूपांतरित होते हैं। किसी बिंदु Q के पुराने निर्देशांक (x, y, z) उसके नए निर्देशांकों (x′, y′, z′) से संबंधित हैं<ref name=":0">{{harvtxt|Anton|1987|p=231}}</ref><math display="block">\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} =
मान लीजिए कि आयताकार xyz-निर्देशांक प्रणाली अपने z अक्ष के चारों ओर वामावर्त (धनात्मक z अक्ष को नीचे की ओर देखते हुए) कोण <math> \theta </math> के माध्यम से घुमाई जाती है, अर्थात धनात्मक x अक्ष को धनात्मक y अक्ष में तुरंत घुमाया जाता है। प्रत्येक बिंदु का z निर्देशांक अपरिवर्तित है और x और y निर्देशांक ऊपर के रूप में रूपांतरित होते हैं। किसी बिंदु Q के पुराने निर्देशांक (x, y, z) उसके नए निर्देशांकों (x′, y′, z′) से संबंधित हैं<ref name=":0">{{harvtxt|Anton|1987|p=231}}</ref><math display="block">\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} =
\begin{bmatrix}
\begin{bmatrix}
   \cos \theta & \sin \theta & 0 \\
   \cos \theta & \sin \theta & 0 \\

Revision as of 13:41, 11 June 2023

xy-कार्टेशियन समन्वय प्रणाली कोण से घूमती है x′y′-कार्तीय समन्वय प्रणाली के लिए

गणित में, दो आयामों में अक्षों का घूर्णन xy-कार्तीय समन्वय प्रणाली से x'y'-कार्तीय समन्वय प्रणाली का मानचित्रण (गणित) है जिसमें मूल को स्थिर (गणित) रखा जाता है और x' और y' अक्षों को घूर्णन करके प्राप्त किया जाता है। x और y कुल्हाड़ियों को कोण से वामावर्त घुमाते हैं। बिंदु P में मूल प्रणाली के संबंध में निर्देशांक (x, y) हैं और नई प्रणाली के संबंध में निर्देशांक (x′, y′) हैं।[1] नई समन्वय प्रणाली में, बिंदु P को विपरीत दिशा में घुमाया गया प्रतीत होगा, अर्थात, कोण के माध्यम से दक्षिणावर्त। दो से अधिक आयामों में अक्षों का घूर्णन समान रूप से परिभाषित किया गया है।[2][3] कुल्हाड़ियों का घूर्णन रेखीय नक्शा[4][5] और कठोर परिवर्तन है।

प्रेरणा

विश्लेषणात्मक ज्यामिति के तरीकों का उपयोग करके वक्र (ज्यामिति) के समीकरणों का अध्ययन करने के लिए समन्वय प्रणाली आवश्यक है। समन्वय ज्यामिति की विधि का उपयोग करने के लिए, कुल्हाड़ियों को विचाराधीन वक्र के संबंध में सुविधाजनक स्थिति में रखा जाता है। उदाहरण के लिए, दीर्घवृत्त और अतिपरवलय के समीकरणों का अध्ययन करने के लिए, नाभि (ज्यामिति) सामान्यतः अक्षों में से पर स्थित होता है और मूल के संबंध में सममित रूप से स्थित होती हैं। यदि कुल्हाड़ियों के संबंध में वक्र (अतिशयोक्ति , पैराबोला, दीर्घवृत्त, आदि) सुविधाजनक रूप से स्थित नहीं है, तो वक्र को सुविधाजनक और परिचित स्थान और अभिविन्यास पर रखने के लिए समन्वय प्रणाली को बदला जाना चाहिए। इस परिवर्तन को करने की प्रक्रिया को निर्देशांक का परिवर्तन कहा जाता है।[6]

ही मूल के माध्यम से नए अक्षों को प्राप्त करने के लिए समन्वय अक्षों को घुमाकर कई समस्याओं का समाधान सरल किया जा सकता है।

व्युत्पत्ति

दो आयामों में परिवर्तन को परिभाषित करने वाले समीकरण, जो xy कुल्हाड़ियों को कोण के माध्यम से x'y' अक्षों में वामावर्त घुमाते हैं, निम्नानुसार व्युत्पन्न होते हैं।

xy प्रणाली में, बिंदु P के ध्रुवीय निर्देशांक हैं। फिर, x′y′ प्रणाली में, P के ध्रुवीय निर्देशांक होंगे .

त्रिकोणमितीय कार्यों का उपयोग करते हुए, हमारे पास है

 

 

 

 

(1)

 

 

 

 

(2)

और अंतर के लिए मानक त्रिकोणमितीय सूत्रों का उपयोग करके, हमारे पास है

 

 

 

 

(3)

 

 

 

 

(4)

समीकरणों (1) और (2) को समीकरणों (3) और (4) में प्रतिस्थापित करने पर, हम [7] प्राप्त करते हैं

 

 

 

 

(5)

 

 

 

 

(6)

समीकरण (5) और (6) को आव्युह के रूप में दर्शाया जा सकता है

जो दो आयामों में अक्षों के घूर्णन का मानक आव्युह समीकरण है।[8]

उलटा परिवर्तन है[9]

 

 

 

 

(7)

 

 

 

 

(8)

या


दो आयामों में उदाहरण

उदाहरण 1

बिंदु के निर्देशांक ज्ञात कीजिए जब अक्षों को कोण , या 30° घुमाया गया हो।

समाधान:

कुल्हाड़ियों को के कोण से वामावर्त घुमाया गया है और नए निर्देशांक हैं। ध्यान दें कि ऐसा प्रतीत होता है कि बिंदु निश्चित अक्षों के संबंध में के माध्यम से दक्षिणावर्त घुमाया गया है, इसलिए यह अब (नए) x' अक्ष के साथ मेल खाता है।

उदाहरण 2

बिंदु के निर्देशांक ज्ञात कीजिए जब अक्षों को 90° दक्षिणावर्त घुमा दिया जाए, अर्थात , या -90 कोण से।

समाधान:

कुल्हाड़ियों को के कोण से घुमाया गया है, जो दक्षिणावर्त दिशा में है और नए निर्देशांक हैं। दोबारा, ध्यान दें कि निश्चित अक्षों के संबंध में बिंदु के माध्यम से वामावर्त घुमाया गया प्रतीत होता है।

शंकु वर्गों का घूर्णन

दूसरी डिग्री के सबसे सामान्य समीकरण का रूप है

     ( not all zero).[10]

 

 

 

 

(9)

निर्देशांकों में परिवर्तन (अक्षों का घूर्णन और अक्षों का अनुवाद) के माध्यम से, समीकरण (9) को मानक रूप में रखा जा सकता है, जिसके साथ काम करना सामान्यतः से आसान होता है। x′y′ पद को समाप्त करने के लिए निर्देशांकों को विशिष्ट कोण पर घुमाना सदैव संभव होता है। समीकरण (7) और (8) को समीकरण (9) में प्रतिस्थापित करने पर, हम प्राप्त करते हैं

 

 

 

 

(10)

जहाँ

 

 

 

 

(11)

यदि चुना जाता है जिससे हमारे पास होगा और समीकरण (10) में x'y' पद लुप्त हो जाएगा।[11]

जब शून्य से भिन्न सभी बी, डी और ई के साथ कोई समस्या उत्पन्न होती है, तो उन्हें उत्तराधिकार में रोटेशन (बी को हटाकर) और अनुवाद (डी और ई शब्दों को हटाकर) करके समाप्त किया जा सकता है।[12]

घुमाए गए शांकव वर्गों की पहचान करना

समीकरण (9) द्वारा दिए गए गैर-पतित शांकव खंड को का मूल्यांकन करके पहचाना जा सकता है। शांकव खंड है: [13]

  • दीर्घवृत्त या वृत्त, यदि ;
  • परबोला, यदि ;
  • अतिपरवलय, यदि .

कई आयामों का सामान्यीकरण

मान लीजिए कि आयताकार xyz-निर्देशांक प्रणाली अपने z अक्ष के चारों ओर वामावर्त (धनात्मक z अक्ष को नीचे की ओर देखते हुए) कोण के माध्यम से घुमाई जाती है, अर्थात धनात्मक x अक्ष को धनात्मक y अक्ष में तुरंत घुमाया जाता है। प्रत्येक बिंदु का z निर्देशांक अपरिवर्तित है और x और y निर्देशांक ऊपर के रूप में रूपांतरित होते हैं। किसी बिंदु Q के पुराने निर्देशांक (x, y, z) उसके नए निर्देशांकों (x′, y′, z′) से संबंधित हैं[14]


आयामों की किसी भी परिमित संख्या का सामान्यीकरण, रोटेशन आव्युह ऑर्थोगोनल आव्युह है जो अधिकतम चार तत्वों में पहचान आव्युह से भिन्न होता है। ये चारों तत्व रूप के होते हैं

     और     

कुछ के लिए और कुछ i ≠ j.[15]



कई आयामों में उदाहरण

उदाहरण 3

धनात्मक w अक्ष को कोण , या 15° से घुमाने के बाद बिंदु के निर्देशांक ज्ञात कीजिए। सकारात्मक z अक्ष में।

'समाधान:'


यह भी देखें

टिप्पणियाँ

  1. Protter & Morrey (1970, p. 320)
  2. Anton (1987, p. 231)
  3. Burden & Faires (1993, p. 532)
  4. Anton (1987, p. 247)
  5. Beauregard & Fraleigh (1973, p. 266)
  6. Protter & Morrey (1970, pp. 314–315)
  7. Protter & Morrey (1970, pp. 320–321)
  8. Anton (1987, p. 230)
  9. Protter & Morrey (1970, p. 320)
  10. Protter & Morrey (1970, p. 316)
  11. Protter & Morrey (1970, pp. 321–322)
  12. Protter & Morrey (1970, p. 324)
  13. Protter & Morrey (1970, p. 326)
  14. Anton (1987, p. 231)
  15. Burden & Faires (1993, p. 532)


संदर्भ

  • Anton, Howard (1987), Elementary Linear Algebra (5th ed.), New York: Wiley, ISBN 0-471-84819-0
  • Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
  • Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3
  • Protter, Murray H.; Morrey, Jr., Charles B. (1970), College Calculus with Analytic Geometry (2nd ed.), Reading: Addison-Wesley, LCCN 76087042