स्थिति (कार्यात्मक विश्लेषण): Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
[[कार्यात्मक विश्लेषण|फलनिक विश्लेषण]] में, प्रचालक प्रणाली की स्थिति [[ऑपरेटर मानदंड]] का एक [[सकारात्मक रैखिक कार्यात्मक|धनात्मक रैखिक फलन]] है। फलनिक विश्लेषण सामान्यीकरण में स्थिति क्वांटम यांत्रिकी में [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] की धारणा है, जो दोनों क्वांटम अवस्थाओं {{section link|quantum state|मिश्र अवस्था |शुद्ध अवस्था |nopage=y}} का प्रतिनिधित्व करते हैं। घनत्व आव्यूह इसके विरोध में क्वांटम अवस्था को सामान्य करते हैं, जो केवल शुद्ध अवस्थाओं का प्रतिनिधित्व करते हैं। एम के लिए एक [[सी * - बीजगणित]] ए में तत्समक के साथ | [[कार्यात्मक विश्लेषण|फलनिक विश्लेषण]] में, प्रचालक प्रणाली की स्थिति [[ऑपरेटर मानदंड]] का एक [[सकारात्मक रैखिक कार्यात्मक|धनात्मक रैखिक फलन]] है। फलनिक विश्लेषण सामान्यीकरण में स्थिति क्वांटम यांत्रिकी में [[घनत्व मैट्रिक्स|घनत्व आव्यूह]] की धारणा है, जो दोनों क्वांटम अवस्थाओं {{section link|quantum state|मिश्र अवस्था |शुद्ध अवस्था |nopage=y}} का प्रतिनिधित्व करते हैं। घनत्व आव्यूह इसके विरोध में क्वांटम अवस्था को सामान्य करते हैं, जो केवल शुद्ध अवस्थाओं का प्रतिनिधित्व करते हैं। एम के लिए एक [[सी * - बीजगणित]] ए में तत्समक के साथ एक प्रचालक प्रणाली, एम के सभी अवस्थाओं का सम्मुचय, जिसे कभी-कभी एस (एम) द्वारा चिह्नित किया जाता है, उत्तल, मंद - * बैनक दुगनी स्थिति एम में बंद होता है<sup>*</सुप>. इस प्रकार मंद-* संस्थिति के साथ एम् की सभी अवस्थाओं का समुच्चय एक सघन हौसडॉर्फ स्थल बनाता है, जिसे 'एम् का अवस्था स्थान' कहा जाता है। | ||
क्वांटम यांत्रिकी के सी*-बीजगणितीय सूत्रीकरण में, इस पिछले अर्थ में अवस्था भौतिक अवस्थाओं के अनुरूप होते हैं, अर्थात भौतिक अवलोकनों (सी*-बीजगणित के स्व-संलग्न अवयव) से उनके अपेक्षित माप परिणाम (वास्तविक संख्या) से मापा जाता हैं। | क्वांटम यांत्रिकी के सी*-बीजगणितीय सूत्रीकरण में, इस पिछले अर्थ में अवस्था भौतिक अवस्थाओं के अनुरूप होते हैं, अर्थात भौतिक अवलोकनों (सी*-बीजगणित के स्व-संलग्न अवयव) से उनके अपेक्षित माप परिणाम (वास्तविक संख्या) से मापा जाता हैं। | ||
Line 5: | Line 5: | ||
== जॉर्डन अपघटन == | == जॉर्डन अपघटन == | ||
अवस्थाओं को संभाव्यता उपायों के अविनिमेय सामान्यीकरण के रूप में देखा जा सकता है। गेलफैंड निरूपण के अनुसार, प्रत्येक क्रमविनिमेय सी*-बीजगणित ए, सी<sub>0</sub>(एक्स) के रूप का कुछ स्थानीय रूप से सघन हौसडॉर्फ एक्स के लिए है। इस स्थिति में, एस (ए) में एक्स पर धनात्मक रेडॉन विधि सम्मलितहैं, और {{section link||शुद्ध अवस्था }} एक्स पर मूल्यांकन का कार्य करते हैं। | |||
अधिक | अधिक साधारणतया, [[जीएनएस निर्माण]] से पता चलता है कि प्रत्येक अवस्था एक उपयुक्त निरूपण चुनने के बाद, सदिश अवस्था होते हैं। | ||
सी *-बीजगणित ए पर एक परिबद्ध रैखिक | सी *-बीजगणित ए पर एक परिबद्ध रैखिक फलन को 'स्व-संबद्ध' कहा जाता है यदि यह ए के स्व-संलग्न अवयवों का वास्तविक मान होता हैं। स्व-संलग्न फलनात्मक [[हस्ताक्षरित उपाय|सांकेतिक माप]] के अविनिमेय रूप हैं। | ||
माप सिद्धांत में हैन अपघटन प्रमेय | माप सिद्धांत में हैन अपघटन प्रमेय के अनुसार प्रत्येक सांकेतिक माप को अलग-अलग सम्मुचयो पर समर्थित दो धनात्मक मापो के अंतर के रूप में व्यक्त किया जा सकता है। इसे अविनिमेय समायोजन तक बढ़ाया जा सकता है। | ||
{{math theorem|math_statement= | {{math theorem|math_statement= "ए" में प्रत्येक स्व संलग्न "ऍफ़" <sup>*</sup> को "ऍफ़"="ऍफ़" लिखा जा सकता हैं <sub>+</sub> − "ऍफ़"<sub>−</sub>जहाँ "ऍफ़"<sub>+</sub> तथा "ऍफ़"<sub>−</sub> धनात्मक फलन होते हैं तथा {{!!}}"ऍफ़"{{!!}} = {{!!}}"ऍफ़"<sub>+</sub>{{!!}} + {{!!}}"ऍफ़"<sub>−</sub>{{!!}}।}} | ||
{{Math proof|drop=hidden|proof= | {{Math proof|drop=hidden|proof= | ||
एक प्रमाण को निम्न रूप से अभिलिखित किया जा सकता हैं: | |||
माना की Ωमंद हैं*- नॉर्म ≤ 1 के साथ "ए" पर धनात्मक रैखिक फलन का सघन समुच्चय, तथा ''सी''(Ω) Ω पर सतत फलन होता हैं। | |||
। "ए" को "सी"(Ω) के बंद रैखिक उपसमष्टि के प्रकार से दर्शाया जा सकता हैं ((यह ''[[रिचर्ड वि कैडीसन|कैडीसन]] फलन को दर्शाता हैं'')। | |||
हान-बैनक के द्वारा, ''ऍफ़'' ''सी''(Ω)*के साथ "जी" तक बढ़ाया जाता हैं। ||g|||f||. | |||
Using results from measure theory quoted above, one has | Using results from measure theory quoted above, one has | ||
Line 34: | Line 34: | ||
}} | }} | ||
उपरोक्त अपघटन से यह पता चलता है कि ए * | उपरोक्त अपघटन से यह पता चलता है कि ए * अवस्थाओं की रैखिक अवधि है। | ||
== राज्यों के कुछ महत्वपूर्ण वर्ग == | == राज्यों के कुछ महत्वपूर्ण वर्ग == |
Revision as of 12:11, 20 June 2023
फलनिक विश्लेषण में, प्रचालक प्रणाली की स्थिति ऑपरेटर मानदंड का एक धनात्मक रैखिक फलन है। फलनिक विश्लेषण सामान्यीकरण में स्थिति क्वांटम यांत्रिकी में घनत्व आव्यूह की धारणा है, जो दोनों क्वांटम अवस्थाओं §§ मिश्र अवस्था and शुद्ध अवस्था का प्रतिनिधित्व करते हैं। घनत्व आव्यूह इसके विरोध में क्वांटम अवस्था को सामान्य करते हैं, जो केवल शुद्ध अवस्थाओं का प्रतिनिधित्व करते हैं। एम के लिए एक सी * - बीजगणित ए में तत्समक के साथ एक प्रचालक प्रणाली, एम के सभी अवस्थाओं का सम्मुचय, जिसे कभी-कभी एस (एम) द्वारा चिह्नित किया जाता है, उत्तल, मंद - * बैनक दुगनी स्थिति एम में बंद होता है*</सुप>. इस प्रकार मंद-* संस्थिति के साथ एम् की सभी अवस्थाओं का समुच्चय एक सघन हौसडॉर्फ स्थल बनाता है, जिसे 'एम् का अवस्था स्थान' कहा जाता है।
क्वांटम यांत्रिकी के सी*-बीजगणितीय सूत्रीकरण में, इस पिछले अर्थ में अवस्था भौतिक अवस्थाओं के अनुरूप होते हैं, अर्थात भौतिक अवलोकनों (सी*-बीजगणित के स्व-संलग्न अवयव) से उनके अपेक्षित माप परिणाम (वास्तविक संख्या) से मापा जाता हैं।
जॉर्डन अपघटन
अवस्थाओं को संभाव्यता उपायों के अविनिमेय सामान्यीकरण के रूप में देखा जा सकता है। गेलफैंड निरूपण के अनुसार, प्रत्येक क्रमविनिमेय सी*-बीजगणित ए, सी0(एक्स) के रूप का कुछ स्थानीय रूप से सघन हौसडॉर्फ एक्स के लिए है। इस स्थिति में, एस (ए) में एक्स पर धनात्मक रेडॉन विधि सम्मलितहैं, और § शुद्ध अवस्था एक्स पर मूल्यांकन का कार्य करते हैं।
अधिक साधारणतया, जीएनएस निर्माण से पता चलता है कि प्रत्येक अवस्था एक उपयुक्त निरूपण चुनने के बाद, सदिश अवस्था होते हैं।
सी *-बीजगणित ए पर एक परिबद्ध रैखिक फलन को 'स्व-संबद्ध' कहा जाता है यदि यह ए के स्व-संलग्न अवयवों का वास्तविक मान होता हैं। स्व-संलग्न फलनात्मक सांकेतिक माप के अविनिमेय रूप हैं।
माप सिद्धांत में हैन अपघटन प्रमेय के अनुसार प्रत्येक सांकेतिक माप को अलग-अलग सम्मुचयो पर समर्थित दो धनात्मक मापो के अंतर के रूप में व्यक्त किया जा सकता है। इसे अविनिमेय समायोजन तक बढ़ाया जा सकता है।
Theorem — "ए" में प्रत्येक स्व संलग्न "ऍफ़" * को "ऍफ़"="ऍफ़" लिखा जा सकता हैं + − "ऍफ़"−जहाँ "ऍफ़"+ तथा "ऍफ़"− धनात्मक फलन होते हैं तथा ||"ऍफ़"|| = ||"ऍफ़"+|| + ||"ऍफ़"−||।
एक प्रमाण को निम्न रूप से अभिलिखित किया जा सकता हैं: माना की Ωमंद हैं*- नॉर्म ≤ 1 के साथ "ए" पर धनात्मक रैखिक फलन का सघन समुच्चय, तथा सी(Ω) Ω पर सतत फलन होता हैं। । "ए" को "सी"(Ω) के बंद रैखिक उपसमष्टि के प्रकार से दर्शाया जा सकता हैं ((यह कैडीसन फलन को दर्शाता हैं)। हान-बैनक के द्वारा, ऍफ़ सी(Ω)*के साथ "जी" तक बढ़ाया जाता हैं।
उपरोक्त अपघटन से यह पता चलता है कि ए * अवस्थाओं की रैखिक अवधि है।
राज्यों के कुछ महत्वपूर्ण वर्ग
शुद्ध राज्य
केरेन-मिलमैन प्रमेय द्वारा, एम के राज्य स्थान में चरम बिंदु हैं[clarification needed]. राज्य स्थान के चरम बिंदुओं को शुद्ध राज्य कहा जाता है और अन्य राज्यों को मिश्रित राज्यों के रूप में जाना जाता है।
वेक्टर राज्य
हिल्बर्ट स्पेस एच और एच में एक वेक्टर एक्स के लिए, समीकरण ωx(ए) := ⟨Ax,x⟩ (ए के लिए बी(एच) में), बी(एच) पर एक सकारात्मक रैखिक कार्यात्मक परिभाषित करता है। चूँकि ωx(1)=||x||2, ओहx एक अवस्था है यदि ||x||=1. यदि A, B(H) का C*-सबलजेब्रा है और A में M एक ऑपरेटर सिस्टम है, तो ω का प्रतिबंधx एम से एम पर एक सकारात्मक रैखिक कार्यात्मक परिभाषित करता है। एम के राज्य जो इस तरह से उत्पन्न होते हैं, एच में यूनिट वैक्टर से, एम के 'वेक्टर राज्य' कहलाते हैं।
वफादार राज्य
एक राज्य विश्वासयोग्य है, यदि यह सकारात्मक तत्वों पर आधारित है, अर्थात, तात्पर्य .
सामान्य स्थिति
एक राज्य सामान्य कहा जाता है, प्रत्येक मोनोटोन के लिए iff, बढ़ता नेट (गणित) कम से कम ऊपरी सीमा वाले ऑपरेटरों की , में विलीन हो जाता है .
ट्रेशियल स्टेट्स
एक ट्रेसियल राज्य एक राज्य है ऐसा है कि
किसी भी वियोज्य सी*-बीजगणित के लिए, ट्रेसियल राज्यों का सेट एक चॉकेट सिद्धांत है।
फैक्टोरियल स्टेट्स
C*-बीजगणित A की एक फैक्टोरियल अवस्था एक ऐसी अवस्था है, जिसमें A के संबंधित GNS प्रतिनिधित्व का कम्यूटेंट एक वॉन न्यूमैन बीजगणित#Factors है।
यह भी देखें
- क्वांटम अवस्था
- गेलफैंड-नैमार्क-सेगल निर्माण
- क्वांटम यांत्रिकी
- क्वांटम स्थिति
- घनत्व मैट्रिक्स
संदर्भ
- Lin, H. (2001), An Introduction to the Classification of Amenable C*-algebras, World Scientific