घूर्णी ब्राउनियन गति: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 46: | Line 46: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 24/05/2023]] | [[Category:Created On 24/05/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 15:53, 3 July 2023
घूर्णी ब्राउनियन गति अन्य अणुओं के साथ संघट्ट के कारण ध्रुवीय अणु के उन्मुखीकरण में यादृच्छिक परिवर्तन होता है। यह इस पदार्थ के सिद्धांतों का महत्वपूर्ण तत्व है।
इस प्रकार के पदार्थ का ध्रुवीकरण घनत्व उस पर लगाए गए विद्युत क्षेत्र के कारण टोक़ के बीच प्रतियोगी होता है, जो अणुओं द्वारा संरेखित किया जाता हैं, और संघट्ट जो संरेखण को नष्ट करते हैं। इस प्रकार के घूर्णी ब्राउनियन गति का सिद्धांत किसी को इन दो प्रतिस्पर्धी प्रभावों के शुद्ध परिणाम की गणना करने की अनुमति देता है, और यह अनुमान लगाने के लिए कि कैसे एक ढांकता हुआ पदार्थ की पारगम्यता लगाए गए विद्युत क्षेत्र की शक्ति और आवृत्ति पर निर्भर करती है।
घूर्णी ब्राउनियन गति की चर्चा सबसे पहले पीटर डेबी ने की थी,[1] जिन्होंने स्थायी विद्युत द्विध्रुव वाले अणुओं के घूर्णन के लिए अल्बर्ट आइंस्टीन के ट्रांसलेशनल गति के सिद्धांत को लागू किया था। इस प्रकार डेबी ने जड़त्वीय प्रभावों की उपेक्षा की और यह मान लिया कि अणु गोलाकार थे, इसके आंतरिक, स्थिर आणविक द्विध्रुव आघूर्ण के साथ इसका उपयोग किया था। उन्होंने डाई इलेक्ट्रिक विश्राम समय और डेबी विश्राम समय के लिए अभिव्यक्तियाँ प्राप्त कीं थी। इन सूत्रों को कई सामग्रियों पर सफलतापूर्वक लागू किया गया है। चूंकि, पारगम्यता के लिए डेबी की अभिव्यक्ति भविष्यवाणी करती है कि अवशोषण एक स्थिर मूल्य की ओर जाता है जब लागू विद्युत क्षेत्र की आवृत्ति बहुत बड़ी हो जाती है - डेबी पठार। यह नहीं देखा गया है, इसके अतिरिक्त अवशोषण अधिकतम की ओर जाता है और फिर बढ़ती आवृत्ति के साथ घटता है।
इन व्यवस्थाओं में डेबी के सिद्धांत में खराबी को जड़त्वीय प्रभावों को सम्मिलित करके ठीक किया जा सकता है; अणुओं को गैर-गोलाकार होने देना, अणुओं के बीच द्विध्रुवीय-द्विध्रुवीय अंतःक्रियाओं सहित; आदि। ये कम्प्यूटरीकृत रूप से बहुत कठिन समस्याएं हैं और घूर्णी ब्राउनियन गति जो वर्तमान समय में शोध का विषय है।
यह भी देखें
- डेबी विश्राम
- ब्राउनियन सतह
अग्रिम पठन
- Peter Debye (1929). Polar Molecules. Dover.
- James Robert McConnell (1980). Rotational Brownian Motion and Dielectric Theory. Academic Press. ISBN 0-12-481850-1.
संदर्भ
- ↑ Debye, P., Berichte der deutschen Physikalischen Gesellschaft, 15, 777 (1913)
बाहरी संबंध
- Random Walks of Ellipsoids Research carried out at the University of Pennsylvania in which the rotational Brownian motion of an isolated ellipsoidal particle was definitively measured.