अपोलोनियन सर्किल: Difference between revisions
No edit summary |
|||
Line 7: | Line 7: | ||
पहले समूह में प्रत्येक वृत्त (आकृति में नीला वृत्त) एक घनात्मक [[वास्तविक संख्या]] ''r'' से जुड़ा है, और इसे बिंदु ''X'' के स्थान के रूप में परिभाषित किया गया है, जैसे कि ''X'' से ''C'' और ''D'' से दूरी का अनुपात ''r'' के बराबर है, | पहले समूह में प्रत्येक वृत्त (आकृति में नीला वृत्त) एक घनात्मक [[वास्तविक संख्या]] ''r'' से जुड़ा है, और इसे बिंदु ''X'' के स्थान के रूप में परिभाषित किया गया है, जैसे कि ''X'' से ''C'' और ''D'' से दूरी का अनुपात ''r'' के बराबर है, | ||
:<math>\left\{X\mid \frac{d(X,C)}{d(X,D)} = r\right\}.</math> | :<math>\left\{X\mid \frac{d(X,C)}{d(X,D)} = r\right\}.</math> | ||
''r'' के मूल्यों के लिए शून्य के नज़दीक, संबंधित वृत्त C के नज़दीक है, जबकि r के मूल्यों के नज़दीक ∞ के लिए, संबंधित वृत्त D के नज़दीक है; मध्यवर्ती मान | ''r'' के मूल्यों के लिए शून्य के नज़दीक, संबंधित वृत्त ''C'' के नज़दीक है, जबकि ''r'' के मूल्यों के नज़दीक ∞ के लिए, संबंधित वृत्त ''D'' के नज़दीक है; मध्यवर्ती मान ''r'' = 1 के लिए, वृत्त एक रेखा, ''CD'' के लंब समद्विभाजक में पतित हो जाता है। इन वृत्तों को लोकस के रूप में परिभाषित करने वाले समीकरण को भारित बिंदुओं के बड़े सेटों के फ़र्मेट-अपोलोनियस वृत्तों को परिभाषित करने के लिए सामान्यीकृत किया जा सकता है। | ||
दूसरे समूह में प्रत्येक वृत्त (आकृति में लाल वृत्त) एक कोण θ के साथ जुड़ा हुआ है, और इसे बिंदु X के स्थान के रूप में परिभाषित किया गया है जैसे कि | दूसरे समूह में प्रत्येक वृत्त (आकृति में लाल वृत्त) एक कोण ''θ'' के साथ जुड़ा हुआ है, और इसे बिंदु ''X'' के स्थान के रूप में परिभाषित किया गया है जैसे कि अंकित कोण ''CXD θ'' के बराबर है, | ||
:<math>\left\{X\mid \; C\hat{X}D \; = \theta\right\}.</math> | :<math>\left\{X\mid \; C\hat{X}D \; = \theta\right\}.</math> | ||
θ को 0 से π तक स्कैन करने से दो बिंदुओं C और D से गुजरने वाले सभी | ''θ'' को ''0'' से π तक स्कैन करने से दो बिंदुओं ''C'' और ''D'' से गुजरने वाले सभी वृत्तों का समुच्चय उत्पन्न होता है। | ||
वे दो बिंदु जहां सभी लाल वृत्त एक दूसरे को काटते हैं, नीले समूह में वृत्तों के युग्मों का सीमित बिंदु (ज्यामिति) हैं। | वे दो बिंदु जहां सभी लाल वृत्त एक दूसरे को काटते हैं, नीले समूह में वृत्तों के युग्मों का सीमित बिंदु (ज्यामिति) हैं। | ||
== द्विध्रुवी निर्देशांक == | == द्विध्रुवी निर्देशांक == | ||
{{main| | {{main|द्विध्रुवी निर्देशांक}} | ||
एक दिया गया नीला वृत्त और एक दिया गया लाल वृत्त दो बिंदुओं पर प्रतिच्छेद करता है। द्विध्रुवी निर्देशांक प्राप्त करने के लिए, यह निर्दिष्ट करने के लिए एक विधि की आवश्यकता होती है कि कौन सा बिंदु सही है। एक आइसोप्टिक चाप बिंदु | |||
एक दिया गया नीला वृत्त और एक दिया गया लाल वृत्त दो बिंदुओं पर प्रतिच्छेद करता है। द्विध्रुवी निर्देशांक प्राप्त करने के लिए, यह निर्दिष्ट करने के लिए एक विधि की आवश्यकता होती है कि कौन सा बिंदु सही है। एक आइसोप्टिक चाप बिंदु X का स्थान है जो बिंदु ''C'' और ''D'' को सदिश के दिए गए उन्मुख कोण के तहत देखता है अर्थात | |||
:<math>\operatorname{isopt}(\theta)=\{X\mid \angle( \overrightarrow{XC}, \overrightarrow{XD} )=\theta +2k\pi\}.</math> | :<math>\operatorname{isopt}(\theta)=\{X\mid \angle( \overrightarrow{XC}, \overrightarrow{XD} )=\theta +2k\pi\}.</math> | ||
ऐसा चाप एक लाल वृत्त में समाहित होता है और बिंदु C और D से घिरा होता है। संबंधित लाल वृत्त का शेष भाग है <math>\operatorname{isopt}(\theta+\pi)</math>. जब हम वास्तव में संपूर्ण लाल वृत्त चाहते हैं, तो सीधी रेखाओं के उन्मुख कोणों का उपयोग करते हुए एक विवरण का उपयोग किया जाना चाहिए | ऐसा चाप एक लाल वृत्त में समाहित होता है और बिंदु ''C'' और ''D'' से घिरा होता है। संबंधित लाल वृत्त का शेष भाग है <math>\operatorname{isopt}(\theta+\pi)</math>. जब हम वास्तव में संपूर्ण लाल वृत्त चाहते हैं, तो सीधी रेखाओं के उन्मुख कोणों का उपयोग करते हुए एक विवरण का उपयोग किया जाना चाहिए | ||
:<math> {\rm full\;red\;circle}=\{X\mid \angle( \overrightarrow{XC}, \overrightarrow{XD} )=\theta +k\pi\}</math> | :<math> {\rm full\;red\;circle}=\{X\mid \angle( \overrightarrow{XC}, \overrightarrow{XD} )=\theta +k\pi\}</math> | ||
== वृत्तों की पेंसिलें == | |||
{{main|पेंसिल (गणित)#वृत्तों की पेंसिलें}} | |||
अपोलोनियन वृत्तों के दोनों समूह वृत्तों के पेंसिल हैं। प्रत्येक को उसके किन्हीं दो सदस्यों द्वारा निर्धारित किया जाता है, जिन्हें पेंसिल का ''जनरेटर'' कहा जाता है। विशेष रूप से, एक ''अण्डाकार पेंसिल'' (आकृति में वृत्तों का लाल समूह) है जिसे दो जनरेटर द्वारा परिभाषित किया गया है जो एक दूसरे से बिल्कुल दो बिंदुओं (''C'' और ''D'') में गुजरते हैं। दूसरा एक ''हाइपरबोलिक पेंसिल'' (आकृति में वृत्तों का नीला समूह) है जिसे दो जनरेटर द्वारा परिभाषित किया गया है जो किसी भी बिंदु पर एक दूसरे को नहीं काटते हैं।<ref>{{harvtxt|Schwerdtfeger|1979|pp=8–10}}.</ref> | |||
=== [[कट्टरपंथी अक्ष]] और केंद्रीय रेखा === | === [[कट्टरपंथी अक्ष]] और केंद्रीय रेखा === | ||
एक पेंसिल के भीतर इनमें से किन्हीं दो वृत्तों में एक ही मूल अक्ष होता है, और पेंसिल के सभी वृत्तों में संरेखीय केंद्र होते हैं। एक ही समूह के तीन या अधिक वृत्त समाक्षीय वृत्त या समाक्षीय वृत्त कहलाते हैं।<ref>MathWorld uses “coaxal,” while {{harvtxt|Akopyan|Zaslavsky|2007}} prefer “coaxial.”</ref> | एक पेंसिल के भीतर इनमें से किन्हीं दो वृत्तों में एक ही मूल अक्ष होता है, और पेंसिल के सभी वृत्तों में संरेखीय केंद्र होते हैं। एक ही समूह के तीन या अधिक वृत्त समाक्षीय वृत्त या समाक्षीय वृत्त कहलाते हैं।<ref>MathWorld uses “coaxal,” while {{harvtxt|Akopyan|Zaslavsky|2007}} prefer “coaxial.”</ref> | ||
== उलटा ज्यामिति, ऑर्थोगोनल | दो बिन्दुओं ''C'' और ''D'' (चित्र में लाल वृत्तों का समूह) से होकर गुजरने वाली वृत्तों की दीर्घवृत्तीय पेंसिल की रेखा ''CD'' इसकी मूल अक्ष है। इस पेंसिल में वृत्तों के केंद्र ''CD'' के लंब समद्विभाजक पर स्थित हैं। बिंदु ''C'' और ''D'' (नीले वृत्त) द्वारा परिभाषित अतिशयोक्तिपूर्ण पेंसिल की रेखा ''CD'' के लंबवत द्विभाजक पर इसकी मूल धुरी होती है, और इसके सभी वृत्त केंद्र रेखा ''CD'' पर होते हैं। | ||
== उलटा ज्यामिति, ऑर्थोगोनल प्रतिच्छेदन, और समन्वय प्रणाली == | |||
वृत्त उलटा विमान को इस तरह से बदल देता है कि वृत्तों को वृत्तों में मैप कर देता है, और वृत्तों की पेंसिलों को वृत्तों की पेंसिलों में बदल देता है। पेंसिल का प्रकार संरक्षित है: एक अण्डाकार पेंसिल का व्युत्क्रम एक अन्य अण्डाकार पेंसिल है, एक अतिशयोक्तिपूर्ण पेंसिल का व्युत्क्रम एक और अतिशयोक्तिपूर्ण पेंसिल है, और एक परवलयिक पेंसिल का व्युत्क्रम एक अन्य परवलयिक पेंसिल है। | वृत्त उलटा विमान को इस तरह से बदल देता है कि वृत्तों को वृत्तों में मैप कर देता है, और वृत्तों की पेंसिलों को वृत्तों की पेंसिलों में बदल देता है। पेंसिल का प्रकार संरक्षित है: एक अण्डाकार पेंसिल का व्युत्क्रम एक अन्य अण्डाकार पेंसिल है, एक अतिशयोक्तिपूर्ण पेंसिल का व्युत्क्रम एक और अतिशयोक्तिपूर्ण पेंसिल है, और एक परवलयिक पेंसिल का व्युत्क्रम एक अन्य परवलयिक पेंसिल है। | ||
व्युत्क्रम का उपयोग करके यह दिखाना अपेक्षाकृत आसान है कि, अपोलोनियन | व्युत्क्रम का उपयोग करके यह दिखाना अपेक्षाकृत आसान है कि, अपोलोनियन वृत्तोंमें, प्रत्येक नीला वृत्त प्रत्येक लाल वृत्त को लंबवत रूप से काटता है, अर्थात एक [[समकोण]] पर बिंदु ''C'' पर केंद्रित एक वृत्त के संबंध में नीले अपोलोनियन वृत्तों का व्युत्क्रम बिंदु ''D'' की छवि पर केंद्रित संकेंद्रित वृत्तों की एक पेंसिल के रूप में होता है। वही व्युत्क्रम लाल वृत्तों को सीधी रेखाओं के एक समुच्चय में बदल देता है जिसमें सभी में ''D'' की छवि होती है इस प्रकार, यह उलटा अपोलोनियन वृत्तों द्वारा परिभाषित द्विध्रुवी निर्देशांक को एक ध्रुवीय निर्देशांक में बदल देता है। | ||
जाहिर है, रूपांतरित पेंसिल समकोण पर मिलती हैं। चूंकि व्युत्क्रमण एक [[अनुरूप नक्शा]] है, यह उन वक्रों के बीच के कोणों को संरक्षित करता है जो इसे बदलते हैं, इसलिए मूल अपोलोनियन वृत्त भी सही कोणों पर मिलते हैं। | जाहिर है, रूपांतरित पेंसिल समकोण पर मिलती हैं। चूंकि व्युत्क्रमण एक [[अनुरूप नक्शा]] है, यह उन वक्रों के बीच के कोणों को संरक्षित करता है जो इसे बदलते हैं, इसलिए मूल अपोलोनियन वृत्त भी सही कोणों पर मिलते हैं। | ||
वैकल्पिक रूप से,<ref>{{harvtxt|Akopyan|Zaslavsky|2007}}, p. 59.</ref> दो पेंसिलों का ऑर्थोगोनल गुण रेडिकल अक्ष के परिभाषित गुण से अनुसरण करता है, कि पेंसिल P के रेडिकल अक्ष पर किसी भी बिंदु X से, X से P में प्रत्येक वृत्त की स्पर्श रेखाओं की लंबाई सभी बराबर होती है। इससे यह पता चलता है कि इन स्पर्शरेखाओं के बराबर लंबाई के साथ X पर केंद्रित वृत्त P के सभी वृत्तों को लंबवत रूप से पार करता है। P के मूल अक्ष पर प्रत्येक X के लिए एक ही निर्माण लागू किया जा सकता है, जिससे P के लंबवत | वैकल्पिक रूप से,<ref>{{harvtxt|Akopyan|Zaslavsky|2007}}, p. 59.</ref> दो पेंसिलों का ऑर्थोगोनल गुण रेडिकल अक्ष के परिभाषित गुण से अनुसरण करता है, कि पेंसिल ''P'' के रेडिकल अक्ष पर किसी भी बिंदु ''X'' से, ''X'' से ''P'' में प्रत्येक वृत्त की स्पर्श रेखाओं की लंबाई सभी बराबर होती है। इससे यह पता चलता है कि इन स्पर्शरेखाओं के बराबर लंबाई के साथ ''X'' पर केंद्रित वृत्त ''P'' के सभी वृत्तों को लंबवत रूप से पार करता है। ''P'' के मूल अक्ष पर प्रत्येक ''X'' के लिए एक ही निर्माण लागू किया जा सकता है, जिससे ''P'' के लंबवत वृत्तों की एक और पेंसिल बन जाती है। | ||
अधिक सामान्यतः वृत्तों के प्रत्येक पेंसिल के लिए एक अनूठी पेंसिल उपस्थित होती है जिसमें वृत्त होती हैं जो पहली पेंसिल के लंबवत होती हैं। यदि एक पेंसिल अण्डाकार है, तो इसकी लंबवत पेंसिल अतिशयोक्तिपूर्ण है, और इसके विपरीत; इस मामले में दो पेंसिल अपोलोनियन वृत्तों का एक समुच्चय बनाती हैं। परवलयिक पेंसिल के लम्बवत् वृत्तों की पेंसिल भी परवलयिक होती है; इसमें ऐसे वृत्त होते हैं जिनमें एक ही उभयनिष्ठ स्पर्श बिंदु होता है लेकिन उस बिंदु पर एक लंब स्पर्श रेखा होती है।<ref>{{harvtxt|Schwerdtfeger|1979|pp=30–31, Theorem A}}.</ref> | |||
== भौतिकी == | == भौतिकी == | ||
अपोलोनियन ट्रैजेक्टोरियों को भंवर कोर या अन्य परिभाषित स्यूडोस्पिन | अपोलोनियन ट्रैजेक्टोरियों को भंवर कोर या अन्य परिभाषित स्यूडोस्पिन अवस्थाएँ द्वारा हस्तक्षेप या युग्मित क्षेत्रों, जैसे फोटोनिक या युग्मित [[पोलरिटोन]] तरंगों से जुड़े कुछ भौतिक प्रणालियों में उनकी गति में दिखाया गया है।<ref>{{Cite journal | title = फुल-ब्लोच बीम और अल्ट्राफास्ट रबी-घूर्णन भंवर| author = Dominici | display-authors=etal | journal = Physical Review Research | volume = 3 | pages = 013007 | year = 2021 | issue = 1 | doi = 10.1103/PhysRevResearch.3.013007 | arxiv = 1801.02580 | bibcode = 2021PhRvR...3a3007D | doi-access = free }}</ref> प्रक्षेपवक्र [[बलोच क्षेत्र]] के [[रबी चक्र|रबी वृत्त]] से उत्पन्न होते हैं और वास्तविक स्थान पर इसका [[त्रिविम प्रक्षेपण]] होता है जहां अवलोकन किया जाता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 22:07, 30 June 2023
ज्यामिति में, अपोलोनियन वृत्त के दो समूह (पेंसिल (ज्यामिति)) होते हैं, जैसे कि पहले समूह में प्रत्येक वृत्त दूसरे समूह में प्रत्येक वृत्त को ओर्थोगोनली रूप से काटता है, और इसके विपरीत होता है। ये वृत्त द्विध्रुवी निर्देशांक का आधार बनाते हैं। वे पेरगा के एपोलोनियस द्वारा खोजे गए थे, जो एक प्रसिद्ध ग्रीक ज्यामितिशास्त्रीय है।
परिभाषा
अपोलोनियन वृत्त को दो अलग-अलग तरीकों से एक रेखा खंड द्वारा परिभाषित किया गया है जो CD को निरूपित करता है।
पहले समूह में प्रत्येक वृत्त (आकृति में नीला वृत्त) एक घनात्मक वास्तविक संख्या r से जुड़ा है, और इसे बिंदु X के स्थान के रूप में परिभाषित किया गया है, जैसे कि X से C और D से दूरी का अनुपात r के बराबर है,
r के मूल्यों के लिए शून्य के नज़दीक, संबंधित वृत्त C के नज़दीक है, जबकि r के मूल्यों के नज़दीक ∞ के लिए, संबंधित वृत्त D के नज़दीक है; मध्यवर्ती मान r = 1 के लिए, वृत्त एक रेखा, CD के लंब समद्विभाजक में पतित हो जाता है। इन वृत्तों को लोकस के रूप में परिभाषित करने वाले समीकरण को भारित बिंदुओं के बड़े सेटों के फ़र्मेट-अपोलोनियस वृत्तों को परिभाषित करने के लिए सामान्यीकृत किया जा सकता है।
दूसरे समूह में प्रत्येक वृत्त (आकृति में लाल वृत्त) एक कोण θ के साथ जुड़ा हुआ है, और इसे बिंदु X के स्थान के रूप में परिभाषित किया गया है जैसे कि अंकित कोण CXD θ के बराबर है,
θ को 0 से π तक स्कैन करने से दो बिंदुओं C और D से गुजरने वाले सभी वृत्तों का समुच्चय उत्पन्न होता है।
वे दो बिंदु जहां सभी लाल वृत्त एक दूसरे को काटते हैं, नीले समूह में वृत्तों के युग्मों का सीमित बिंदु (ज्यामिति) हैं।
द्विध्रुवी निर्देशांक
एक दिया गया नीला वृत्त और एक दिया गया लाल वृत्त दो बिंदुओं पर प्रतिच्छेद करता है। द्विध्रुवी निर्देशांक प्राप्त करने के लिए, यह निर्दिष्ट करने के लिए एक विधि की आवश्यकता होती है कि कौन सा बिंदु सही है। एक आइसोप्टिक चाप बिंदु X का स्थान है जो बिंदु C और D को सदिश के दिए गए उन्मुख कोण के तहत देखता है अर्थात
ऐसा चाप एक लाल वृत्त में समाहित होता है और बिंदु C और D से घिरा होता है। संबंधित लाल वृत्त का शेष भाग है . जब हम वास्तव में संपूर्ण लाल वृत्त चाहते हैं, तो सीधी रेखाओं के उन्मुख कोणों का उपयोग करते हुए एक विवरण का उपयोग किया जाना चाहिए
वृत्तों की पेंसिलें
अपोलोनियन वृत्तों के दोनों समूह वृत्तों के पेंसिल हैं। प्रत्येक को उसके किन्हीं दो सदस्यों द्वारा निर्धारित किया जाता है, जिन्हें पेंसिल का जनरेटर कहा जाता है। विशेष रूप से, एक अण्डाकार पेंसिल (आकृति में वृत्तों का लाल समूह) है जिसे दो जनरेटर द्वारा परिभाषित किया गया है जो एक दूसरे से बिल्कुल दो बिंदुओं (C और D) में गुजरते हैं। दूसरा एक हाइपरबोलिक पेंसिल (आकृति में वृत्तों का नीला समूह) है जिसे दो जनरेटर द्वारा परिभाषित किया गया है जो किसी भी बिंदु पर एक दूसरे को नहीं काटते हैं।[1]
कट्टरपंथी अक्ष और केंद्रीय रेखा
एक पेंसिल के भीतर इनमें से किन्हीं दो वृत्तों में एक ही मूल अक्ष होता है, और पेंसिल के सभी वृत्तों में संरेखीय केंद्र होते हैं। एक ही समूह के तीन या अधिक वृत्त समाक्षीय वृत्त या समाक्षीय वृत्त कहलाते हैं।[2]
दो बिन्दुओं C और D (चित्र में लाल वृत्तों का समूह) से होकर गुजरने वाली वृत्तों की दीर्घवृत्तीय पेंसिल की रेखा CD इसकी मूल अक्ष है। इस पेंसिल में वृत्तों के केंद्र CD के लंब समद्विभाजक पर स्थित हैं। बिंदु C और D (नीले वृत्त) द्वारा परिभाषित अतिशयोक्तिपूर्ण पेंसिल की रेखा CD के लंबवत द्विभाजक पर इसकी मूल धुरी होती है, और इसके सभी वृत्त केंद्र रेखा CD पर होते हैं।
उलटा ज्यामिति, ऑर्थोगोनल प्रतिच्छेदन, और समन्वय प्रणाली
वृत्त उलटा विमान को इस तरह से बदल देता है कि वृत्तों को वृत्तों में मैप कर देता है, और वृत्तों की पेंसिलों को वृत्तों की पेंसिलों में बदल देता है। पेंसिल का प्रकार संरक्षित है: एक अण्डाकार पेंसिल का व्युत्क्रम एक अन्य अण्डाकार पेंसिल है, एक अतिशयोक्तिपूर्ण पेंसिल का व्युत्क्रम एक और अतिशयोक्तिपूर्ण पेंसिल है, और एक परवलयिक पेंसिल का व्युत्क्रम एक अन्य परवलयिक पेंसिल है।
व्युत्क्रम का उपयोग करके यह दिखाना अपेक्षाकृत आसान है कि, अपोलोनियन वृत्तोंमें, प्रत्येक नीला वृत्त प्रत्येक लाल वृत्त को लंबवत रूप से काटता है, अर्थात एक समकोण पर बिंदु C पर केंद्रित एक वृत्त के संबंध में नीले अपोलोनियन वृत्तों का व्युत्क्रम बिंदु D की छवि पर केंद्रित संकेंद्रित वृत्तों की एक पेंसिल के रूप में होता है। वही व्युत्क्रम लाल वृत्तों को सीधी रेखाओं के एक समुच्चय में बदल देता है जिसमें सभी में D की छवि होती है इस प्रकार, यह उलटा अपोलोनियन वृत्तों द्वारा परिभाषित द्विध्रुवी निर्देशांक को एक ध्रुवीय निर्देशांक में बदल देता है।
जाहिर है, रूपांतरित पेंसिल समकोण पर मिलती हैं। चूंकि व्युत्क्रमण एक अनुरूप नक्शा है, यह उन वक्रों के बीच के कोणों को संरक्षित करता है जो इसे बदलते हैं, इसलिए मूल अपोलोनियन वृत्त भी सही कोणों पर मिलते हैं।
वैकल्पिक रूप से,[3] दो पेंसिलों का ऑर्थोगोनल गुण रेडिकल अक्ष के परिभाषित गुण से अनुसरण करता है, कि पेंसिल P के रेडिकल अक्ष पर किसी भी बिंदु X से, X से P में प्रत्येक वृत्त की स्पर्श रेखाओं की लंबाई सभी बराबर होती है। इससे यह पता चलता है कि इन स्पर्शरेखाओं के बराबर लंबाई के साथ X पर केंद्रित वृत्त P के सभी वृत्तों को लंबवत रूप से पार करता है। P के मूल अक्ष पर प्रत्येक X के लिए एक ही निर्माण लागू किया जा सकता है, जिससे P के लंबवत वृत्तों की एक और पेंसिल बन जाती है।
अधिक सामान्यतः वृत्तों के प्रत्येक पेंसिल के लिए एक अनूठी पेंसिल उपस्थित होती है जिसमें वृत्त होती हैं जो पहली पेंसिल के लंबवत होती हैं। यदि एक पेंसिल अण्डाकार है, तो इसकी लंबवत पेंसिल अतिशयोक्तिपूर्ण है, और इसके विपरीत; इस मामले में दो पेंसिल अपोलोनियन वृत्तों का एक समुच्चय बनाती हैं। परवलयिक पेंसिल के लम्बवत् वृत्तों की पेंसिल भी परवलयिक होती है; इसमें ऐसे वृत्त होते हैं जिनमें एक ही उभयनिष्ठ स्पर्श बिंदु होता है लेकिन उस बिंदु पर एक लंब स्पर्श रेखा होती है।[4]
भौतिकी
अपोलोनियन ट्रैजेक्टोरियों को भंवर कोर या अन्य परिभाषित स्यूडोस्पिन अवस्थाएँ द्वारा हस्तक्षेप या युग्मित क्षेत्रों, जैसे फोटोनिक या युग्मित पोलरिटोन तरंगों से जुड़े कुछ भौतिक प्रणालियों में उनकी गति में दिखाया गया है।[5] प्रक्षेपवक्र बलोच क्षेत्र के रबी वृत्त से उत्पन्न होते हैं और वास्तविक स्थान पर इसका त्रिविम प्रक्षेपण होता है जहां अवलोकन किया जाता है।
यह भी देखें
- पेरगा का एपोलोनियस
- ग्रीक गणित
टिप्पणियाँ
- ↑ Schwerdtfeger (1979, pp. 8–10).
- ↑ MathWorld uses “coaxal,” while Akopyan & Zaslavsky (2007) prefer “coaxial.”
- ↑ Akopyan & Zaslavsky (2007), p. 59.
- ↑ Schwerdtfeger (1979, pp. 30–31, Theorem A).
- ↑ Dominici; et al. (2021). "फुल-ब्लोच बीम और अल्ट्राफास्ट रबी-घूर्णन भंवर". Physical Review Research. 3 (1): 013007. arXiv:1801.02580. Bibcode:2021PhRvR...3a3007D. doi:10.1103/PhysRevResearch.3.013007.
संदर्भ
- Akopyan, A. V.; Zaslavsky, A. A. (2007), Geometry of Conics, Mathematical World, vol. 26, American Mathematical Society, pp. 57–62, ISBN 978-0-8218-4323-9.
- Pfeifer, Richard E.; Van Hook, Cathleen (1993), "Circles, Vectors, and Linear Algebra", Mathematics Magazine, 66 (2): 75–86, doi:10.2307/2691113, JSTOR 2691113.
- Schwerdtfeger, Hans (1979), Geometry of Complex Numbers: Circle Geometry, Moebius Transformation, Non-Euclidean Geometry, Dover, pp. 8–10.
- Samuel, Pierre (1988), Projective Geometry, Springer, pp. 40–43.
- Ogilvy, C. Stanley (1990), Excursions in Geometry, Dover, ISBN 0-486-26530-7.
बाहरी संबंध
- Weisstein, Eric W. "Coaxal Circles". MathWorld.
- David B. Surowski: Advanced High-School Mathematics. p. 31