आउटपुट युग्मक: Difference between revisions

From Vigyanwiki
m (11 revisions imported from alpha:आउटपुट_युग्मक)
No edit summary
 
Line 28: Line 28:


{{Lasers}}
{{Lasers}}
[[Category: लेजर विज्ञान]] [[Category: दर्पण]]


 
[[Category:All articles needing additional references]]
 
[[Category:Articles needing additional references from March 2017]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Created On 19/06/2023]]
[[Category:Created On 19/06/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with broken file links]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:दर्पण]]
[[Category:लेजर विज्ञान]]

Latest revision as of 16:24, 5 July 2023

लेजर के प्रमुख घटक:
  1. सक्रिय लेजर माध्यम
  2. लेजर पम्पिंग ऊर्जा
  3. उच्च परावर्तक
  4. आउटपुट युग्मक
  5. लेजर किरण

आउटपुट युग्मक (ओसी) एक ऑप्टिकल रेसोनेटर यंत्र का घटक है, जो लेजर के इंट्राकैविटी बीम से प्रकाश के एक भाग को निकालने की अनुमति देता है। और इस प्रकार आउटपुट युग्मक में प्राय: आंशिक रूप से परावर्तक दर्पण होता है, जिससे इंट्राकैविटी किरणपुंज के एक निश्चित भाग में से होकर संचारित करने की अनुमति मिलती है। अन्य विधियों में केविटी के प्रत्येक छोर पर लगभग पूरी तरह से परावर्तक दर्पणों का उपयोग किया जाता है और इस प्रकार बीम का उत्सर्जन या तो एक दर्पण के केंद्र में ड्रिल किए गए एक छोटे छेद में केंद्रित करके या घूर्णन दर्पण प्रिज्म के उपयोग के माध्यम से पुनर्निर्देशित करके किया जाता है। अन्य ऑप्टिकल उपकरण जिसके कारण बीम एक निश्चित समय पर अंत दर्पणों में से एक को बायपास कर देता है।

पार्शियली रिफ्लेक्टिव दर्पण

डाई लेजर के लिए एक डाइइलेक्ट्रिक आउटपुट युग्मक 550 एनएम पर केंद्रित होता है और बाईं तस्वीर पीले प्रकाश के लिए अपनी उच्च परावर्तन और लाल और नीले प्रकाश के लिए उच्च संप्रेषण दिखाती है। सही तस्वीर यह दिखाती है कि यह लेजर बीम के 75% को दर्शाती है और 25% संचारित करती है, चूंकि दूर जाने की तुलना में पर्यवेक्षक की ओर बढ़ते समय बीम उज्जवल दिखाई देता है।
File:Outputcoupler.jpg
हीलियम-नियॉन लेजर का आउटपुट युग्मक

एक आउटपुट युग्मक के आकार में पार्शियली रूप से दिखाई देने वाला दर्पण होता है जिसे बीम स्प्लीटर कहा जाता है। दर्पण का परावर्तन और संप्रेषण का निर्धारण सामान्यतया लेज़र के माध्यम से निर्धारित किया जाता है। कुछ लेज़रों में पराबैंगनीकिरण बहुत कम होता है, इसलिए बीम को पर्याप्त लाभ के लिए माध्यम से कई दर्रे बनानी होती है। इस स्थिति में आउटपुट युग्मक 99% परावर्तक के रूप में उच्च हो सकता है, जो केविटी की बीम में केवल 1% का उपयोग करने के लिए संचारण करता है। अधिकांश ठोस-अवस्था वाले लेज़रों की तुलना में डाई लेजर का लाभ बहुत अधिक होता है, इसलिए बीम को अपने इष्टतम लाभ तक पहुँचने के लिए तरल से कुछ ही गुजरने की आवश्यकता होती है, इस प्रकार आउटपुट युग्मक सामान्यतः लगभग 80% परावर्तक होता है। अन्य लोगों में, जैसे कि एक्साइमर लेजर, अनकोटेड ग्लास के 4% परावर्तनीयता एक पर्याप्त दर्पण प्रदान करती है, जो लगभग 96% इंट्राकैविटी बीम को प्रसारित करती है।

लेज़र दो या दो से अधिक दर्पणों के बीच परावर्तन (भौतिकी) प्रकाश द्वारा संचालित होते हैं, जिनके बीच एक सक्रिय लेज़र माध्यम होता है और इस प्रकार माध्यम उत्तेजित उत्सर्जन द्वारा प्रकाश को बढ़ाता है। जिससे की लेज़िंग होने के लिए सक्रिय माध्यम का लाभ लेज़र के कुल नुकसान से बड़ा होता है, जिसमें अवांछित प्रभाव जैसे अवशोषण (विद्युत चुम्बकीय विकिरण), बीम पथ के अतिरिक्त अन्य दिशाओं में उत्सर्जन और आउटपुट युग्मक के माध्यम से ऊर्जा का जानबूझकर रिलीज जैसे अवांछित प्रभाव के रूप में सम्मलित हैं। दूसरे शब्दों में, लेज़र को अटैन थ्रेसहोल्ड तक पहुँचना होता है।

आउटपुट युग्मक के तीन महत्वपूर्ण गुण होते है,

  • वक्रता की त्रिज्या
उच्च परावर्तक के आकार के साथ आउटपुट युग्मक की सतह का आकार ऑप्टिकल केविटी की स्थिरता निर्धारित करता है। ऑप्टिकल केविटी के डिजाइन के आधार पर आउटपुट युग्मक या तो फ्लैट या कर्व दर्पण के रूप में होता है और इस प्रकार वक्रता की त्रिज्या सामान्यतः तल, संकेंद्रित, कन्फोकल आदि के द्वारा निर्धारित की जाती है। केविटी के प्रकार केविटी के व्यास और लंबाई के साथ वांछित रूप में निर्धारित होता है, केविटी में सामना करने वाले आउटपुट युग्मक का फेस आंशिक रूप से परावर्तक कोटिंग के साथ होता है। यह वह पक्ष है जो लेजर मोडल गुणों को आंशिक रूप से निर्धारित करता है। यदि यह आंतरिक सतह कर्वड रूप में होती है, तो बाहरी सतह भी कर्वड होनी चाहिए। यह ओसी को लेंस के रूप में कार्य करना बंद कर देता है। बाहरी सतह की वक्रता को एक संपार्श्विक लेजर आउटपुट देने के लिए डिज़ाइन किया जा सकता है। इस बाहरी सतह में सामान्यतः आउटपुट पावर को अधिकतम करने के लिए एक विरोधी प्रतिबिंब कोटिंग प्रयुक्त होती है और इस प्रकार नुकसान को कम करने बीम प्रोफाइल को बढ़ाने और कम्पेटिबिलिटी को अधिकतम करने के लिए सतह का आकार सामान्यतः बहुत उच्च इंजीनियरिंग सहनशीलता के लिए निर्मित होता है, एक आदर्श सतह किसी भी विचलन को कम करता है। इन विचलनों को सामान्यतः इतना छोटा रखा जाता है कि उन्हें इंटरफेरोमीटर या ऑप्टिकल फ्लैट जैसे उपकरणों का उपयोग करके प्रकाश की तरंग दैर्ध्य में मापा जाता है और इस प्रकार सामान्यतः एक लेजर आउटपुट युग्मक को λ/10 प्रकाश की तरंग दैर्ध्य का दसवां भाग या सहिष्णुता के लिए निर्मित किया जाता है।
  • प्रतिबिंब
माध्यम के लाभ के आधार पर, ओसी को प्रतिबिंबित करने के लिए आवश्यक प्रकाश की मात्रा व्यापक रूप से भिन्न हो सकती है। हीलियम-नियॉन लेज़रों को लेस करने के लिए लगभग 99% परावर्तक दर्पण की आवश्यकता होती है, जबकि नाइट्रोजन लेजर पराबैंगनीकिरण से अत्यधिक उच्च लाभ होता है, वे सुपररेडियंस रूप में होते है और किसी ओसी 0% परावर्तक की आवश्यकता नहीं होती है। किसी भी ओसी की परावर्तकता तरंग दैर्ध्य के साथ बदलती रहती है। धातु-लेपित दर्पणों में सामान्यतः व्यापक बैंडविड्थ पर अच्छी परावर्तनीयता होती है, लेकिन ये स्पेक्ट्रम के पूरे भाग को कवर नहीं कर सकता है। दृश्य रेंज में चांदी की 99.9% तक परावर्तनात्मकता को प्रदर्शित करती है, लेकिन यह पराबैंगनी का एक खराब परावर्तक होता है। एल्युमिनियम अवरक्त किरण को प्रतिबिंबित नहीं करता है, लेकिन निकट-यूवी के माध्यम से दृश्य रेंज से एक अच्छा परावर्तक होता है, जबकि सोना अवरक्त प्रकाश के लिए अत्यधिक परावर्तक है, लेकिन पीले रंग की तुलना में कम तरंग दैर्ध्य का एक खराब परावर्तक है। एक विशिष्ट तरंग दैर्ध्य के लिए डिज़ाइन किए जाने पर एक परावैद्युत दर्पण में ट्यूनिंग रेंज 10 एनएम जितनी कम हो सकती है, या ट्यून लेजर के लिए 100 एनएम तक फैले विस्तृत रेंज के साथ डिज़ाइन किया जा सकता है। इस कारण से उत्तरी ध्रुव की वर्णक्रमीय विशेषताओं पर विचार करना महत्वपूर्ण है।
  • ट्रांसमिसिलिटी
दर्पण के उपसमूह के रूप में प्रयुक्त की जाने वाली सामग्री भी एक महत्वपूर्ण विचार है। अधिकांश चश्मे में निकटवर्ती यूवी से निकट आईआर के पास अच्छी ट्रांसमिसिलिटी होती है, लेकिन कम या लंबी तरंग दैर्ध्य में निकलने वाले लेज़रों को एक अलग सब्सट्रेट की आवश्यकता हो सकती है। उदाहरण के लिए, जिंक सेलेनाइड का उपयोग सामान्यतः कार्बन डाइऑक्साइड पराबैंगनीकिरण में किया जाता है क्योंकि इसकी अवरक्त तरंग दैर्ध्य के लिए उच्च संप्रेषण होता है।

कैविटी डम्पर

कैविटी डम्पर एक आउटपुट युग्मक के रूप में होता है, जो Q स्विच का कार्य करता है। यह ऊर्जा को ऑप्टिकल केविटी में निर्मित होने की अनुमति देता है और फिर इसे एक विशेष समय अंतराल पर रिलीज करता है। यह बीम को उच्च स्तर तक निर्माण करने और फिर बहुत कम समय में रिलीज करने की अनुमति देता है और इस प्रकार अधिकांश समय के भीतर यह केविटी के माध्यम से एक चक्कर पूरा करने के लिए एक प्रकाश तरंग लेता है, इसलिए तीव्रता से निर्माण के बाद केविटी अचानक अपनी ऊर्जा को छोड़ देता है। कैविटी डम्पर सामान्यतः कैविटी के प्रत्येक छोर पर एक उच्च-परावर्तक दर्पण का उपयोग करते हैं, जिससे बीम को माध्यम से पूर्ण लाभ प्राप्त करने की अनुमति मिलती है। एक विशिष्ट अंतराल पर पॉकेल्स सेल, एक ध्वनिक-ऑप्टिक मॉडुलक या एक तेजी से घूमने वाले प्रिज्म या दर्पण जैसे उपकरण का उपयोग करके बीम को पुनर्निर्देशित किया जाता है। यह पुनर्निर्देशित बीम अंत दर्पण को बायपास करता है, जिससे एक बहुत शक्तिशाली पल्स उत्सर्जित होती है। कैविटी डम्पर का उपयोग निरंतर-तरंग संचालन के लिए किया जा सकता है, लेकिन उनका सबसे सामान्य उपयोग मोड-लॉकिंग लेजर के साथ होता है, जो इसकी चरम तीव्रता पर बहुत कम पल्स निकालने के लिए होता है।[1]

यह भी देखें

संदर्भ

  1. Principles of Lasers by Orazio Svelto -- Springer 1998 Page 368