अनंत आवेग प्रतिक्रिया: Difference between revisions

From Vigyanwiki
Line 104: Line 104:


=== स्टेप इनवेरिएंस ===
=== स्टेप इनवेरिएंस ===
स्टेप इनवेरिएंस इंपल्स इनवेरिएंट की तुलना में एक बेहतर डिजाइन विधि है। नमूना लेते समय डिजिटल फ़िल्टर में विभिन्न स्थिरांक के साथ इनपुट के कई खंड होते हैं, जो असतत चरणों से बना होता है। चरण अपरिवर्तनीय IIR फ़िल्टर ADC के समान इनपुट चरण संकेत की तुलना में कम सटीक है। हालांकि, यह आवेग अपरिवर्तनीय की तुलना में किसी भी इनपुट के लिए बेहतर सन्निकटन है।<br />
स्टेप इनवेरिएंस इंपल्स इनवेरिएंट की तुलना में एक बेहतर डिजाइन तरीका है। नमूना लेते समय डिजिटल फ़िल्टर में विभिन्न स्थिरांक वाले इनपुट के कई खंड होते हैं, जो असतत चरणों से बना होता है। चरण अपरिवर्तनीय IIR फ़िल्टर ADC के समान इनपुट चरण संकेत की तुलना में कम सही है। हालांकि, यह आवेग अपरिवर्तनीय की तुलना में किसी भी इनपुट के लिए बेहतर सन्निकटन है।<br />
जब टी (जेड) और टी (एस) दोनों चरण इनपुट होते हैं तो चरण अपरिवर्तनीय समान नमूना मानों की समस्या को हल करता है। डिजिटल फ़िल्टर का इनपुट u(n) है, और एनालॉग फ़िल्टर का इनपुट u(t) है। कनवर्ट किए गए आउटपुट सिग्नल को प्राप्त करने के लिए इन दो इनपुट पर z-ट्रांसफॉर्म और लैपलेस ट्रांसफॉर्म लागू करें।<br />
जब टी (जेड) और टी (एस) दोनों चरण इनपुट हैं, तो चरण अपरिवर्तनीय समान नमूना मानों की समस्या को हल करता है। डिजिटल फ़िल्टर का इनपुट u(n) है, और एनालॉग फ़िल्टर का इनपुट u(t) है। परिवर्तित आउटपुट सिग्नल प्राप्त करने के लिए इन दो इनपुट पर z-ट्रांसफॉर्म और लैपलेस ट्रांसफॉर्म लागू करें।चरण इनपुट पर z- परिवर्तन निष्पादित करें <math>Z[u(n)]=\dfrac{z}{z-1}</math>
चरण इनपुट पर z- परिवर्तन निष्पादित करें <math>Z[u(n)]=\dfrac{z}{z-1}</math><br />
जेड-ट्रांसफॉर्म के बाद परिवर्तित आउटपुट <math>Y(z)=T(z)U(z)=T(z)\dfrac{z}{z-1}</math><br />
जेड-ट्रांसफॉर्म के बाद परिवर्तित आउटपुट <math>Y(z)=T(z)U(z)=T(z)\dfrac{z}{z-1}</math><br />
स्टेप इनपुट पर लाप्लास ट्रांसफॉर्म करें <math>L[u(t)]=\dfrac{1}{s}</math><br />
स्टेप इनपुट पर लाप्लास ट्रांसफॉर्म करें <math>L[u(t)]=\dfrac{1}{s}</math><br />
लाप्लास परिवर्तन के बाद परिवर्तित आउटपुट <math>Y(s)=T(s)U(s)=\dfrac{T(s)}{s}</math><br />
लाप्लास परिवर्तन के बाद परिवर्तित आउटपुट <math>Y(s)=T(s)U(s)=\dfrac{T(s)}{s}</math><br />
एनालॉग फिल्टर का आउटपुट y(t) है, जो Y(s) का उलटा लाप्लास ट्रांसफॉर्म है। यदि प्रत्येक टी सेकंड में नमूना लिया जाता है, तो यह वाई (एन) है, जो वाई (जेड) का उलटा रूपांतरण है। इन संकेतों का उपयोग डिजिटल फ़िल्टर और एनालॉग फ़िल्टर के लिए हल करने के लिए किया जाता है और नमूना समय पर समान आउटपुट होता है।<br />
एनालॉग फिल्टर का आउटपुट y(t) है, जो कि Y(s) का उलटा लैपलेस ट्रांसफॉर्म है। यदि प्रत्येक टी सेकंड में नमूना लिया जाता है, तो यह वाई (एन) है, जो वाई (जेड) का उलटा रूपांतरण है। इन संकेतों का उपयोग डिजिटल फ़िल्टर और एनालॉग फ़िल्टर को हल करने के लिए किया जाता है और नमूनाकरण समय पर समान आउटपुट होता है।
निम्नलिखित समीकरण टी (जेड) के समाधान को इंगित करता है, जो एनालॉग फ़िल्टर के लिए अनुमानित सूत्र है। <br />
निम्नलिखित समीकरण टी (जेड) के समाधान को इंगित करता है, जो कि एनालॉग फिल्टर के लिए अनुमानित सूत्र है।<br />
:<math>T(z)=\dfrac{z-1}{z}Y(z)</math><br />
:<math>T(z)=\dfrac{z-1}{z}Y(z)</math><br />
:<math>T(z)=\dfrac{z-1}{z}Z[y(n)]</math><br />
:<math>T(z)=\dfrac{z-1}{z}Z[y(n)]</math><br />
Line 118: Line 117:


=== बिलिनियर ट्रांसफॉर्म ===
=== बिलिनियर ट्रांसफॉर्म ===
बिलिनियर ट्रांसफॉर्म एक कंफर्मल मैपिंग का एक विशेष मामला है, जिसका इस्तेमाल अक्सर ट्रांसफर फंक्शन को बदलने के लिए किया जाता है <math>H_a(s)</math> ट्रांसफर फ़ंक्शन के लिए निरंतर-समय डोमेन (जिसे अक्सर एनालॉग फ़िल्टर कहा जाता है) में एक रैखिक, समय-अपरिवर्तनीय (एलटीआई) फ़िल्टर का <math>H_d(z)</math> असतत-समय डोमेन में एक रैखिक, शिफ्ट-अपरिवर्तनीय फ़िल्टर का।
बिलिनियर ट्रांसफॉर्म एक कंफर्मल मैपिंग का एक विशेष मामला है, जिसे अक्सर एक लीनियर,टाइम-इनवेरिएंट (एलटीआई) फिल्टर के ट्रांसफर फंक्शन <math>H_a(s)</math> को कंटीन्यूअस-टाइम डोमेन (जिसे अक्सर कहा जाता है) में बदलने के लिए इस्तेमाल किया जाता है। असतत-समय डोमेन में एक रैखिक, शिफ्ट-अपरिवर्तनीय फ़िल्टर के स्थानांतरण फ़ंक्शन <math>H_d(z)</math> के लिए एक एनालॉग फ़िल्टर)। बिलिनियर ट्रांसफॉर्म प्राकृतिक लॉगरिदम फ़ंक्शन का प्रथम-क्रम अनुमान है जो एस-प्लेन के लिए जेड-प्लेन का सटीक मानचित्रण है। जब लाप्लास परिवर्तन एक असतत-समय संकेत पर किया जाता है (एक संगत विलंबित इकाई आवेग से जुड़े असतत-समय अनुक्रम के प्रत्येक तत्व के साथ), तो परिणाम के प्रतिस्थापन के साथ असतत-समय अनुक्रम का Z रूपांतरण ठीक होता है
बिलिनियर ट्रांसफॉर्म प्राकृतिक लॉगरिदम फ़ंक्शन का प्रथम-क्रम अनुमान है जो एस-प्लेन के लिए जेड-प्लेन का सटीक मानचित्रण है। जब लाप्लास परिवर्तन एक असतत-समय संकेत पर किया जाता है (एक संगत विलंबित इकाई आवेग से जुड़े असतत-समय अनुक्रम के प्रत्येक तत्व के साथ), तो परिणाम असतत-समय अनुक्रम का Z परिवर्तन होता है जिसमें प्रतिस्थापन होता है


:<math>
:<math>

Revision as of 16:05, 26 October 2022

अनंत आवेग प्रतिक्रिया (IIR) एक ऐसी संपत्ति है जो कई रैखिक समय-अपरिवर्तनीय प्रणालियों पर लागू होती है जो एक आवेग प्रतिक्रिया होने से प्रतिष्ठित होती हैं जो एक निश्चित बिंदु से बिल्कुल शून्य नहीं होती है, लेकिन अनिश्चित काल तक जारी रहती है। यह एक परिमित आवेग प्रतिक्रिया (एफआईआर) प्रणाली के विपरीत है जिसमें आवेग प्रतिक्रिया कुछ परिमित टी के लिए समय पर बिल्कुल शून्य हो जाती है, इस प्रकार परिमित अवधि की होती है। रैखिक समय-अपरिवर्तनीय प्रणालियों के सामान्य उदाहरण इलेक्ट्रॉनिक फिल्टर और डिजिटल फिल्टर हैं। इस गुण वाली प्रणाली को IIR सिस्टम या IIR फ़िल्टर के रूप में जाना जाता है।

व्यवहार में, आवेग प्रतिक्रिया, यहां तक कि IIR प्रणालियों की भी, आमतौर पर शून्य के करीब पहुंचती है और एक निश्चित बिंदु से पहले इसे उपेक्षित किया जा सकता है। हालाँकि भौतिक प्रणालियाँ जो IIR या प्राथमिकी प्रतिक्रियाओं को जन्म देती हैं, वे भिन्न हैं, और इसमें अंतर का महत्व है। उदाहरण के लिए,प्रतिरोधों, संधारित्र, और कुचालक(और शायद रैखिक एम्पलीफायरों) से बना एनालॉग इलेक्ट्रॉनिक फ़िल्टर आम तौर पर आईआईआर फ़िल्टर होते हैं। दूसरी ओर, असतत-समय फ़िल्टर (आमतौर पर डिजिटल फ़िल्टर) बिना किसी प्रतिक्रिया के टैप की गई विलंब रेखा पर आधारित प्राथमिकी फ़िल्टर होते हैं।एनालॉग फिल्टर में संधारित्र (या कुचालक) में एक "मेमोरी" होती है और उनकी आंतरिक स्थिति कभी भी एक आवेग के बाद पूरी तरह से आराम नहीं करती है (कैपेसिटर और इंडक्टर्स के शास्त्रीय मॉडल को मानते हुए जहां क्वांटम प्रभावों को नजरअंदाज किया जाता है)। लेकिन बाद के मामले में, एक आवेग टैप की गई विलंब रेखा के अंत तक पहुंच गया है, सिस्टम को उस आवेग की कोई और स्मृति नहीं है और वह अपनी प्रारंभिक स्थिति में वापस आ गया है; उस बिंदु से आगे उसकी आवेग प्रतिक्रिया बिल्कुल शून्य है।

कार्यान्वयन और डिजाइन

हालांकि लगभग सभी एनालॉग फिल्टर इलेक्ट्रॉनिक फिल्टर आईआईआर हैं, डिजिटल फिल्टर या तो आईआईआर या एफआईआर हो सकते हैं। असतत-समय फ़िल्टर (जैसे नीचे दिखाया गया ब्लॉक आरेख) की टोपोलॉजी में प्रतिक्रिया की उपस्थिति आम तौर पर एक आईआईआर प्रतिक्रिया बनाती है। एक आईआईआर फिल्टर के जेड को बदलने स्थानांतरण प्रकार्य में एक गैर-तुच्छ हर होता है, जो उन प्रतिक्रिया शर्तों का वर्णन करता है। दूसरी ओर, एक एफआईआर फिल्टर के स्थानांतरण कार्य में केवल एक अंश होता है, जैसा कि नीचे दिए गए सामान्य रूप में व्यक्त किया गया है। सभी के साथ गुणांक (प्रतिक्रिया शर्तें) के साथ शून्य हैं और फ़िल्टर में कोई परिमित ध्रुव नहीं है।

आईआईआर एनालॉग इलेक्ट्रॉनिक फिल्टर से संबंधित स्थानांतरण कार्यों का उनके आयाम और चरण विशेषताओं के लिए व्यापक अध्ययन और अनुकूलन किया गया है। ये निरंतर-समय फ़िल्टर फ़ंक्शन लाप्लास डोमेन में वर्णित हैं। वांछित समाधानों को असतत-समय फिल्टर के मामले में स्थानांतरित किया जा सकता है, जिनके स्थानांतरण कार्य z डोमेन में व्यक्त किए जाते हैं, कुछ गणितीय तकनीकों जैसे कि द्विरेखीय परिवर्तन , आवेग invariance या पोल-ज़ीरो मिलान विधि के उपयोग के माध्यम से। इस प्रकार डिजिटल आईआईआर फिल्टर एनालॉग फिल्टर के लिए जाने-माने समाधानों पर आधारित हो सकते हैं जैसे कि चेबीशेव फ़िल्टर , बटरवर्थ फ़िल्टर और अण्डाकार फिल्टर , जो उन समाधानों की विशेषताओं को विरासत में मिला है।

ट्रांसफर फंक्शन व्युत्पत्ति

डिजिटल फिल्टर को अक्सर अंतर समीकरण के संदर्भ में वर्णित और कार्यान्वित किया जाता है जो परिभाषित करता है कि आउटपुट सिग्नल इनपुट सिग्नल से कैसे संबंधित है:

कहाँ पे:

  • फीडफॉरवर्ड फिल्टर ऑर्डर है
  • फीडफॉरवर्ड फिल्टर गुणांक हैं
  • फीडबैक फ़िल्टर ऑर्डर है
  • प्रतिक्रिया फ़िल्टर गुणांक हैं
  • इनपुट सिग्नल है
  • आउटपुट सिग्नल है।

अंतर समीकरण का एक अधिक संघनित रूप है:

जो, पुनर्व्यवस्थित होने पर बन जाता है:

फ़िल्टर के स्थानांतरण फ़ंक्शन को खोजने के लिए, हम पहले उपरोक्त समीकरण के प्रत्येक पक्ष का Z- परिवर्तन लेते हैं, जहाँ हम प्राप्त करने के लिए Z-transform#Properties|time-shift गुण का उपयोग करते हैं:

हम स्थानांतरण फ़ंक्शन को परिभाषित करते हैं:

यह देखते हुए कि अधिकांश IIR फ़िल्टर में गुणांक डिज़ाइन किया गया है 1 है, IIR फ़िल्टर स्थानांतरण फ़ंक्शन अधिक पारंपरिक रूप लेता है:

Simple IIR filter block diagram
IIR फ़िल्टर के ब्लॉक आरेख का एक उदाहरण। h> ब्लॉक एक इकाई विलंब है।


स्थिरता

ट्रांसफर फ़ंक्शन किसी को यह तय करने की अनुमति देता है कि कोई सिस्टम बाउंडेड-इनपुट, बाउंडेड-आउटपुट स्टेबिलिटी | बाउंडेड-इनपुट, बाउंडेड-आउटपुट (BIBO) स्थिर है या नहीं। विशिष्ट होने के लिए, BIBO स्थिरता मानदंड की आवश्यकता है कि सिस्टम के अभिसरण की त्रिज्या में यूनिट सर्कल शामिल हो। उदाहरण के लिए, एक कारण प्रणाली के लिए, स्थानांतरण फ़ंक्शन के सभी Pole_(complex_analysis) ध्रुवों का एक से छोटा निरपेक्ष मान होना चाहिए। दूसरे शब्दों में, सभी ध्रुव z-प्लेन में एक इकाई सर्कल के भीतर स्थित होने चाहिए

ध्रुवों को के मूल्यों के रूप में परिभाषित किया गया है जो का हर बनाते हैं 0 के बराबर:

स्पष्ट है, यदि तो ध्रुवों के मूल में स्थित नहीं होते हैं -विमान। यह परिमित आवेग प्रतिक्रिया फिल्टर के विपरीत है जहां सभी ध्रुव मूल स्थान पर स्थित होते हैं, और इसलिए हमेशा स्थिर होते हैं।

आईआईआर फिल्टर को कभी-कभी एफआईआर फिल्टर पर पसंद किया जाता है क्योंकि एक आईआईआर फिल्टर उसी क्रम के एफआईआर फिल्टर की तुलना में बहुत तेज संक्रमण क्षेत्र धड़ल्ले से बोलना प्राप्त कर सकता है।

उदाहरण

स्थानांतरण कार्य करने दें असतत-समय फ़िल्टर द्वारा दिया जाना चाहिए:

पैरामीटर द्वारा शासित , एक वास्तविक संख्या के साथ . एक ध्रुव के साथ स्थिर और कारण है . टाइम-डोमेन आवेग प्रतिक्रिया द्वारा दिया जा सकता है:

कहाँ पे हेविसाइड स्टेप फंक्शन#असतत रूप है। यह देखा जा सकता है सभी के लिए शून्य नहीं है , इस प्रकार एक आवेग प्रतिक्रिया जो असीम रूप से जारी रहती है।

IIR फ़िल्टर उदाहरण


फायदे और नुकसान

पासबैंड, स्टॉपबैंड, रिपल, और/या रोल-ऑफ के संदर्भ में एक विनिर्देश को पूरा करने के लिए, प्राथमिक लाभ डिजिटल आईआईआर फिल्टर का प्राथमिक लाभ कार्यान्वयन में उनकी दक्षता है। विनिर्देशों के इस तरह के एक सेट को निम्न क्रम (उपरोक्त सूत्रों में क्यू) आईआईआर फ़िल्टर के साथ पूरा किया जा सकता है, जो समान आवश्यकताओं को पूरा करने वाले एफआईआर फ़िल्टर के लिए आवश्यक होगा। यदि एक सिग्नल प्रोसेसर में कार्यान्वित किया जाता है, तो इसका मतलब है कि प्रति समय कदम पर गणना की संख्या कम है; संगणनात्मक बचत अक्सर एक बड़ा कारक होता है।

दूसरी ओर, एफआईआर फिल्टर को डिजाइन करना आसान हो सकता है, उदाहरण के लिए, किसी विशेष आवृत्ति प्रतिक्रिया आवश्यकता से मेल खाने के लिए। यह विशेष रूप से सच है जब आवश्यकता सामान्य मामलों (उच्च-पास, निम्न-पास, पायदान, आदि) में से एक नहीं है, जिसका अध्ययन किया गया है और एनालॉग फिल्टर के लिए अनुकूलित किया गया है। इसके अलावा एफआईआर फिल्टर को आसानी से रैखिक चरण (निरंतर समूह विलंब बनाम आवृत्ति) बनाया जा सकता है - एक संपत्ति जो आसानी से आईआईआर फिल्टर का उपयोग करके पूरी नहीं होती है और फिर केवल एक अनुमान के रूप में (उदाहरण के लिए बेसेल फिल्टर के साथ)। डिजिटल आईआईआर फिल्टर के संबंध में एक और मुद्दा निष्क्रिय होने पर सीमा चक्र व्यवहार की संभावना है, परिमाणीकरण के साथ प्रतिक्रिया प्रणाली के कारण होता है।

डिजाइन के तरीके

आवेग आक्रमण

इंपल्स इनवेरिएंस निरंतर-समय के फिल्टर से असतत-समय अनंत-आवेग-प्रतिक्रिया (IIR) फिल्टर डिजाइन करने की एक तकनीक है जिसमें असतत-समय प्रणाली की आवेग प्रतिक्रिया उत्पन्न करने के लिए निरंतर-समय प्रणाली की आवेग प्रतिक्रिया का नमूना लिया जाता है। इंपल्स इनवेरिएंस एस-प्लेन से जेड-प्लेन तक मैपिंग की दो बुनियादी आवश्यकताओं को पूरा करने के लिए आमतौर पर इस्तेमाल की जाने वाली विधियों में से एक है। यह टी (जेड) को हल करके प्राप्त किया जाता है जिसमें एनालॉग फ़िल्टर के समान नमूना समय पर समान आउटपुट मान होता है, और यह केवल तभी लागू होता है जब इनपुट पल्स में हों।
ध्यान दें कि इस विधि द्वारा उत्पन्न डिजिटल फिल्टर के सभी इनपुट अनुमानित मूल्य हैं, पल्स इनपुट को छोड़कर जो बहुत सही हैं। यह सबसे सरल आईआईआर फिल्टर डिजाइन विधि है। यह कम आवृत्तियों पर सबसे सही है, इसलिए आमतौर पर इसका उपयोग कम-पास फिल्टर में किया जाता है।
लैपलेस ट्रांसफॉर्म या जेड-ट्रांसफॉर्म के लिए, ट्रांसफॉर्मेशन के बाद का आउटपुट सिर्फ इनपुट को संबंधित ट्रांसफॉर्मेशन फंक्शन, टी (एस) या टी (जेड) से गुणा किया जाता है। Y(s) और Y(z) क्रमशः इनपुट X(s) और इनपुट X(z) के परिवर्तित आउटपुट हैं।



यूनिट आवेग पर लैपलेस ट्रांसफॉर्म या जेड-ट्रांसफॉर्म को लागू करते समय, परिणाम 1 होता है। इसलिए, रूपांतरण के बाद आउटपुट परिणाम
हैं



अब एनालॉग फिल्टर का आउटपुट टाइम डोमेन में उलटा लाप्लास ट्रांसफॉर्म है।


यदि हम t के बजाय nT का उपयोग करते हैं, तो हम नमूना समय पर पल्स से प्राप्त आउटपुट y(nT) प्राप्त कर सकते हैं। इसे y(n)
. के रूप में भी व्यक्त किया जा सकता है


इस असतत समय संकेत को T(z) प्राप्त करने के लिए z-transform लागू किया जा सकता है




अंतिम समीकरण गणितीय रूप से वर्णन करता है कि एक डिजिटल आईआईआर फिल्टर एनालॉग सिग्नल पर जेड-ट्रांसफॉर्म करना है जिसे लैपलेस द्वारा नमूना और टी (एस) में परिवर्तित किया गया है, जिसे आमतौर पर सरल किया जाता है


इस तथ्य पर ध्यान दें कि सूत्र में एक गुणक T दिखाई दे रहा है। ऐसा इसलिए है क्योंकि यूनिट पल्स के लिए लैपलेस ट्रांसफॉर्म और जेड-ट्रांसफॉर्म 1 होने पर भी पल्स ही जरूरी नहीं है। एनालॉग संकेतों के लिए, पल्स का एक अनंत मान होता है, लेकिन क्षेत्र t=0 पर 1 होता है, लेकिन यह असतत-समय पल्स t=0 पर 1 होता है, इसलिए गुणक T के अस्तित्व की आवश्यकता होती है।

स्टेप इनवेरिएंस

स्टेप इनवेरिएंस इंपल्स इनवेरिएंट की तुलना में एक बेहतर डिजाइन तरीका है। नमूना लेते समय डिजिटल फ़िल्टर में विभिन्न स्थिरांक वाले इनपुट के कई खंड होते हैं, जो असतत चरणों से बना होता है। चरण अपरिवर्तनीय IIR फ़िल्टर ADC के समान इनपुट चरण संकेत की तुलना में कम सही है। हालांकि, यह आवेग अपरिवर्तनीय की तुलना में किसी भी इनपुट के लिए बेहतर सन्निकटन है।
जब टी (जेड) और टी (एस) दोनों चरण इनपुट हैं, तो चरण अपरिवर्तनीय समान नमूना मानों की समस्या को हल करता है। डिजिटल फ़िल्टर का इनपुट u(n) है, और एनालॉग फ़िल्टर का इनपुट u(t) है। परिवर्तित आउटपुट सिग्नल प्राप्त करने के लिए इन दो इनपुट पर z-ट्रांसफॉर्म और लैपलेस ट्रांसफॉर्म लागू करें।चरण इनपुट पर z- परिवर्तन निष्पादित करें जेड-ट्रांसफॉर्म के बाद परिवर्तित आउटपुट
स्टेप इनपुट पर लाप्लास ट्रांसफॉर्म करें
लाप्लास परिवर्तन के बाद परिवर्तित आउटपुट
एनालॉग फिल्टर का आउटपुट y(t) है, जो कि Y(s) का उलटा लैपलेस ट्रांसफॉर्म है। यदि प्रत्येक टी सेकंड में नमूना लिया जाता है, तो यह वाई (एन) है, जो वाई (जेड) का उलटा रूपांतरण है। इन संकेतों का उपयोग डिजिटल फ़िल्टर और एनालॉग फ़िल्टर को हल करने के लिए किया जाता है और नमूनाकरण समय पर समान आउटपुट होता है। निम्नलिखित समीकरण टी (जेड) के समाधान को इंगित करता है, जो कि एनालॉग फिल्टर के लिए अनुमानित सूत्र है।





बिलिनियर ट्रांसफॉर्म

बिलिनियर ट्रांसफॉर्म एक कंफर्मल मैपिंग का एक विशेष मामला है, जिसे अक्सर एक लीनियर,टाइम-इनवेरिएंट (एलटीआई) फिल्टर के ट्रांसफर फंक्शन को कंटीन्यूअस-टाइम डोमेन (जिसे अक्सर कहा जाता है) में बदलने के लिए इस्तेमाल किया जाता है। असतत-समय डोमेन में एक रैखिक, शिफ्ट-अपरिवर्तनीय फ़िल्टर के स्थानांतरण फ़ंक्शन के लिए एक एनालॉग फ़िल्टर)। बिलिनियर ट्रांसफॉर्म प्राकृतिक लॉगरिदम फ़ंक्शन का प्रथम-क्रम अनुमान है जो एस-प्लेन के लिए जेड-प्लेन का सटीक मानचित्रण है। जब लाप्लास परिवर्तन एक असतत-समय संकेत पर किया जाता है (एक संगत विलंबित इकाई आवेग से जुड़े असतत-समय अनुक्रम के प्रत्येक तत्व के साथ), तो परिणाम के प्रतिस्थापन के साथ असतत-समय अनुक्रम का Z रूपांतरण ठीक होता है

कहाँ पे द्विरेखीय रूपांतरण व्युत्पत्ति में प्रयुक्त समलम्बाकार नियम का संख्यात्मक एकीकरण चरण आकार है; या, दूसरे शब्दों में, नमूना अवधि। उपरोक्त द्विरेखीय सन्निकटन को के लिए हल किया जा सकता है या इसी तरह के सन्निकटन के लिए किया जासकताहे।

इस मानचित्रण का व्युत्क्रम (और इसका प्रथम-क्रम द्विरेखीय सन्निकटन) है

इस संबंध का उपयोग किसी भी एनालॉग फिल्टर के लैपलेस ट्रांसफर फ़ंक्शन या एनालॉग फिल्टर के डिजिटल अनंत आवेग प्रतिक्रिया (IIR) फ़िल्टर T(z) में किया जाता है।
बिलिनियर ट्रांसफॉर्म अनिवार्य रूप से इस पहले ऑर्डर सन्निकटन का उपयोग करता है और निरंतर-समय हस्तांतरण फ़ंक्शन में स्थानापन्न करता है,

वह है

जिसका उपयोग आईआईआर डिजिटल फिल्टर की गणना के लिए किया जाता है, जो एनालॉग फिल्टर के लैपलेस ट्रांसफर फ़ंक्शन से शुरू होता है।

यह भी देखें

बाहरी संबंध