मेटा एआई: Difference between revisions

From Vigyanwiki
m (4 revisions imported from alpha:मेटा_एआई)
No edit summary
 
Line 56: Line 56:
{{Differentiable computing}}
{{Differentiable computing}}


 
[[Category:CS1 British English-language sources (en-gb)]]
[[Category: मेटा प्लेटफार्म]] [[Category: कृत्रिम बुद्धिमत्ता प्रयोगशालाएँ]] [[Category: कैलिफोर्निया में 2013 प्रतिष्ठान]]
[[Category:CS1 English-language sources (en)]]
 
[[Category:Collapse templates]]
 
 
[[Category: Machine Translated Page]]
[[Category:Created On 27/06/2023]]
[[Category:Created On 27/06/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:कृत्रिम बुद्धिमत्ता प्रयोगशालाएँ]]
[[Category:कैलिफोर्निया में 2013 प्रतिष्ठान]]
[[Category:मेटा प्लेटफार्म]]

Latest revision as of 18:11, 16 July 2023

मेटा एआई एक आर्टिफीसियल इंटेलिजेंस प्रयोगशाला है जो मेटा प्लेटफार्म इंक (जिसे पहले फेसबुक, इंक. के नाम से जाना जाता था) से संबंधित है।[1] मेटा एआई का आशय आर्टिफीसियल इंटेलिजेंस के विभिन्न रूपों को विकसित करना था, संवर्धित वास्तविकता और कृत्रिम वास्तविकता प्रौद्योगिकियों में सुधार करना है।[2] मेटा एआई एक अकादमिक अनुसंधान प्रयोगशाला है जो एआई समुदाय के लिए ज्ञान उत्पन्न करने पर केंद्रित है।[3] यह फेसबुक की एप्लाइड मशीन लर्निंग (एएमएल) टीम के विपरीत है, जो अपने उत्पादों के व्यावहारिक अनुप्रयोगों पर ध्यान केंद्रित करती है।[3]


इतिहास

मेटा एआई की प्रारंभिक फेसबुक आर्टिफिशियल इंटेलिजेंस रिसर्च (एफएआईआर) के रूप में मेनलो पार्क, कैलिफोर्निया, मुख्यालय, लंडन, यूनाइटेड किंगडम और मैनहट्टन में एक नई प्रयोगशाला के साथ हुई। फेयर की आधिकारिक घोषणा सितंबर, 2013 में की गई थी।[4] फेयर का निर्देशन न्यूयॉर्क विश्वविद्यालय के वाई एन एल ईसीयू के अंदर द्वारा किया गया था, जो एक गहन शिक्षण प्रोफेसर और ट्यूरिंग पुरस्कार विजेता हैं।[5] एनवाईयू के सेंटर फॉर डेटा साइंस के साथ काम करते हुए, फेयर का प्रारंभिक लक्ष्य डेटा साइंस, मशीन लर्निंग और आर्टिफिशियल इंटेलिजेंस पर शोध करना था। फेयर का लक्ष्य इंटेलिजेंस को समझना होता है, जिससे उसके मूलभूत सिद्धांतों की खोज करना और मशीनों को बहुत अधिक इंटेलिजेंस बनाना था।[6] एफएआईआर के शोध ने उस तकनीक का नेतृत्व किया जिससे चेहरे की पहचान, छवियों में टैगिंग और वैयक्तिकृत फ़ीड अनुशंसा को बढ़ावा मिला था।[7] सांख्यिकीय शिक्षा में अग्रणी, व्लादिमीर वापनिक, फेयर में सम्मिलित हुए[8] 2014 में, वह समर्थन वेक्टर यंत्र के सह-आविष्कारक और वाप्निक-चेर्वोनेंकिस सिद्धांत के डेवलपर्स में से एक हैं।

फेयर ने 2015 में पेरिस, फ्रांस में एक अनुसंधान केंद्र खोला,[9] और बाद में सिएटल, पिट्सबर्ग, टेल अवीव, मॉन्ट्रियल और लंदन में छोटी उपग्रह अनुसंधान प्रयोगशालाएँ प्रारंभ कीं थी ।[10] 2016 में, फेयर ने लोगों और समाज को लाभ पहुंचाने के लिए आर्टिफिशियल इंटेलिजेंस पर साझेदारी बनाने के लिए गूगल, अमेज़न (कंपनी), आईबीएम और माइक्रोसॉफ्ट के साथ साझेदारी की, एक संगठन जो खुले लाइसेंस प्राप्त अनुसंधान पर ध्यान केंद्रित करता है, नैतिक और कुशल अनुसंधान प्रथाओं का समर्थन करता है, और निष्पक्षता समावेशिता और पारदर्शिता पर चर्चा करता है।

2018 में, आईबीएम आईबीएम के बड़े डेटा समूह के पूर्व मुख्य प्रौद्योगिकी अधिकारी जेरोम पेसेंटी ने फेयर के अध्यक्ष की भूमिका निभाई, जबकि लेकुन ने मुख्य एआई वैज्ञानिक के रूप में सेवा करने के लिए पद छोड़ दिया गया।[11] 2018 में, फेयर को एआई रिसर्च रैंकिंग 2019 में 25वें स्थान पर रखा गया था, जिसने एआई अनुसंधान में अग्रणी शीर्ष वैश्विक संगठनों को स्थान दिया था।[12] फेयर 2019 में तेजी से आठवें स्थान पर पहुंच गया,[13] और 2020 की रैंक में आठवां स्थान बनाय रखा था।[14] 2018 में फेयर में लगभग 200 कर्मचारी थे, और 2020 तक उस संख्या को दोगुना करने का लक्ष्य था।[15]

एफएआईआर के प्रारंभिक कार्य में शिक्षण-मॉडल सक्षम मेमोरी नेटवर्क, स्व-पर्यवेक्षित शिक्षण और जनरेटिव प्रतिकूल नेटवर्क, टेक्स्ट वर्गीकरण और अनुवाद, साथ ही कंप्यूटर दृष्टि में अनुसंधान सम्मिलित था।[6]फेयर ने टॉर्च डीप-लर्निंग मॉड्यूल जारी किया और 2017 में, फेयर ने पायटोरच, एक खुला स्त्रोत ओपन-सोर्स मशीन लर्निंग फ्रेमवर्क प्रसारित किया गीता था।[6] पश्चात में पायटोरच का उपयोग टेस्ला, इंक. के ऑटोपायलट जैसी कई गहन शिक्षण तकनीकों में किया गया था [16] और उबेर का पायरो।[17] इसके अतिरिक्त 2017 में, फेयर ने एक शोध परियोजना बंद कर दी जब एआई बॉट्स ने एक ऐसी भाषा विकसित की जो मनुष्यों के लिए समझ से बाहर थी,[18] आर्टिफीसियल इंटेलिजेंस के नियंत्रण से बाहर हो जाने के डिस्टॉपियन डर के बारे में बातचीत को उत्तेजित करता है।[19] चूँकि फेयर ने स्पष्ट किया कि अनुसंधान बंद कर दिया गया था क्योंकि उन्होंने डर के अतिरिक्त यह समझने का अपना प्रारंभिक लक्ष्य पूरा कर लिया था कि भाषाएँ कैसे उत्पन्न होती हैं।[18]

रीब्रांडिंग के बाद फेयर का नाम बदलकर मेटा एआई कर दिया गया जिसने फेसबुक इंक को मेटा प्लेटफ़ॉर्म इंक में बदल दिया है।[1]

2022 में, मेटा एआई ने दो सप्ताह में 600 मिलियन संभावित प्रोटीन के 3डी आकार की पूर्वानुमान की थी ।[20]

वर्तमान शोध

23 फरवरी, 2022 के लाइव इवेंट इनसाइड द लैब: बिल्डिंग फॉर द मेटावर्स विद एआई में, मेटा एआई टीम ने आर्टिफीसियल इंटेलिजेंस में अनुसंधान और विकास में प्रमुख प्रगति पर चर्चा की।[21] ऐसा ही एक टूल बिल्डरबॉट है, जो उपयोगकर्ताओं को वॉयस कमांड का उपयोग करके आभासी दुनिया उत्पन्न करने की अनुमति देता है। अन्य उपकरणों में नो लैंग्वेज लेफ्ट बिहाइंड, एक प्रणाली जो लिखित भाषाओं के बीच स्वचालित अनुवाद करने में सक्षम है, और एक यूनिवर्सल स्पीच ट्रांसलेटर, एक प्रणाली जो तात्कालिक वाक्-से-वाक् अनुवाद करने में सक्षम है, सम्मिलित हैं।

कंप्यूटर दृष्टि

मेटा एआई के कंप्यूटर विज़न अनुसंधान का उद्देश्य डिजिटल छवियों और वीडियो से पर्यावरण के बारे में जानकारी निकालना है।[22] एआई द्वारा विकसित कंप्यूटर विज़न तकनीक का एक उदाहरण पैनोप्टिक सेगमेंटेशन है, जो अग्रभूमि में वस्तुओं को पहचानता है किंतु पृष्ठभूमि में दृश्यों को भी वर्गीकृत करता है।[23] मेटा एआई विज़ुअल क्वेश्चन आंसरिंग तकनीक में सुधार करना चाहता है, जिसमें एक मशीन चक्र-स्थिरता का उपयोग करके छवियों के बारे में मानव उपयोगकर्ता के सवालों का उत्तर देती है, जिससे मशीन प्रश्नों में भाषाई विविधताओं को संबोधित करने के लिए उत्तर के अतिरिक्त एक प्रश्न भी उत्पन्न करती है।[24]


प्राकृतिक भाषा प्रसंस्करण और संवादात्मक एआई

आर्टिफीसियल इंटेलिजेंस संचार के लिए प्राकृतिक भाषा को समझने और स्वाभाविक भाषा निर्माण के लिए एक मशीन की आवश्यकता होती है। मेटा एआई सुरक्षित संचार को उत्तम बनाने के लिए इन तकनीकों में सुधार करना चाहता है, तथापि उपयोगकर्ता कोई भी भाषा बोलता हो।[25] इस प्रकार, एक केंद्रीय कार्य में अन्य भाषाओं के लिए प्राकृतिक भाषा प्रसंस्करण (एनएलपी) तकनीक का सामान्यीकरण सम्मिलित है। जैसे, मेटा एआई सक्रिय रूप से बिना पर्यवेक्षित मशीन अनुवाद पर काम करता है।[26][27] मेटा एआई पुनरावृत्ति, विशिष्टता, प्रतिक्रिया-संबंधितता और प्रश्न-पूछने जैसे चिटचैट संवाद के पहलुओं को विकसित करके प्राकृतिक भाषा उपयोगकर्ता इंटरफ़ेस में सुधार करना चाहता है।[28] छवि कैप्शनिंग में व्यक्तित्व को सम्मिलित करना है,[29] और रचनात्मकता-आधारित भाषा उत्पन्न करना होता है।[30]

2018 में, मेटा एआई ने ओपन-सोर्स पायटेक्स्ट लॉन्च किया, जो एनएलपी सिस्टम पर केंद्रित एक मॉडलिंग फ्रेमवर्क है।[31] 2023 में, मेटा एआई ने एक 65बी पैरामीटर बड़े भाषा मॉडल एलएलएएमए ( बड़ा भाषा मॉडल मेटा एआई) की घोषणा की और ओपन सोर्स किया गया था।[32]


रैंकिंग और अनुशंसाएँ

फेसबुक और इंस्टाग्राम अपने न्यूज़फ़ीड, विज्ञापनों और खोज परिणामों में रैंकिंग और अनुशंसाओं में मेटा एआई अनुसंधान का उपयोग करते हैं।[33] मेटा एआई ने रीएजेंट भी प्रस्तुत किया है, जो एक टूलसेट है जो निर्णय लेता है और उपयोगकर्ता प्रतिक्रिया का मूल्यांकन करता है।[34]


सिस्टम अनुसंधान

मशीन लर्निंग और एआई नवीन एल्गोरिदम, सॉफ्टवेयर और हार्डवेयर प्रौद्योगिकियों के विकास पर निर्भर करते हैं। जैसे, मेटा एआई की सिस्टम अनुसंधान टीमें कंप्यूटर भाषाओं, संकलक और इलेक्ट्रॉनिक हार्डवेयर अनुप्रयोगों का अध्ययन करती हैं।[35]


सिद्धांत

मेटा एआई आर्टिफीसियल इंटेलिजेंस की गणितीय और सैद्धांतिक नींव का अध्ययन करता है। मेटा एआई के पास लर्निंग थ्योरी (सांख्यिकी), गणितीय अनुकूलन और संकेत आगे बढ़ाना में प्रकाशन हैं।[36]


हार्डवेयर

एमटीआईए वी1 मेटा की पहली पीढ़ी का एआई प्रशिक्षण और अनुमान हार्डवेयर त्वरण है, जिसे विशेष रूप से मेटा की अनुशंसा कार्यभार के लिए विकसित किया गया है। इसे टीएसएमसी की 7nm प्रक्रिया प्रौद्योगिकी का उपयोग करके निर्मित किया गया था और यह 800 मेगाहर्ट्ज की आवृत्ति पर संचालित होता है। प्रसंस्करण शक्ति के संदर्भ में, त्वरक INT8 परिशुद्धता पर 102.4 टॉप्स और एफपी16 परिशुद्धता पर 51.2 टीएफएलओपीएस प्रदान करता है, जबकि 25 W की थर्मल डिज़ाइन पावर (टीडीपी) बनाए रखता है।[37][38][39]

त्वरक को 64 प्रसंस्करण तत्वों (पीई) के ग्रिड के आसपास संरचित किया गया है, जो 8x8 कॉन्फ़िगरेशन में व्यवस्थित है, और यह आवश्यक इंटरकनेक्ट के साथ ऑन-चिप और ऑफ-चिप मेमोरी संसाधनों से सुसज्जित है। प्रत्येक पीई में दो प्रोसेसर कोर (एक वेक्टर एक्सटेंशन के साथ) और मैट्रिक्स गुणन, संचय, डेटा आंदोलन और नॉनलाइनियर कार्य गणना जैसे कार्यों के लिए अनुकूलित कई निश्चित-कार्य इकाइयां होती हैं। प्रोसेसर कोर आवश्यक गणना और नियंत्रण कार्यों को करने के लिए व्यापक अनुकूलन के साथ आरआईएससी-वी ओपन अनुदेश सेट वास्तुकला (आईएसए) का उपयोग करते हैं।

एक्सेलरेटर का मेमोरी सबसिस्टम ऑफ-चिप डीरैम संसाधनों के लिए एलपीडीडीआर का उपयोग करता है और इसे 128 जीबी तक बढ़ाया जा सकता है। इसके अतिरिक्त, इसमें 128 एमबी का ऑन-चिप एसआरएएम है जो अधिकांशतः उपयोग किए जाने वाले डेटा और निर्देशों तक तेज़ पहुंच के लिए सभी पीई के बीच साझा किया जाता है। डिज़ाइन समानांतर कंप्यूटिंग और डेटा पुन: उपयोग को प्रोत्साहित करता है, थ्रेड और डेटा-स्तरीय समानता (टीएलपी और डीएलपी), निर्देश-स्तरीय समानता (आईएलपी), और मेमोरी-स्तरीय समानता (एमएलपी) की प्रस्तुति करता है।

एमटीआईए एक्सेलेरेटर कॉम्पैक्ट डुअल M.2 बोर्ड पर लगाए गए हैं, जो सर्वर में आसान एकीकरण को सक्षम बनाता है। बोर्ड पीसीआई एक्सप्रेस जेन4x8 लिंक के माध्यम से होस्ट सीपीयू से जुड़ते हैं और उनकी विद्युत् की खपत 35 W जितनी कम होती है। इन एक्सेलेरेटर को होस्ट करने वाले सर्वर कंप्यूट प्रोजेक्ट खोलें से योसेमाइट V3 सर्वर विनिर्देश का उपयोग करते हैं। प्रत्येक सर्वर में 12 एक्सेलेरेटर होते हैं जो पीसीआईई स्विच के पदानुक्रम के माध्यम से परस्पर जुड़े होते हैं, जिससे कार्यभार को कई एक्सेलेरेटर में वितरित किया जा सकता है और समवर्ती रूप से निष्पादित किया जा सकता है।

संदर्भ

  1. 1.0 1.1 Murphy Kelly, Samantha (October 29, 2021). "फेसबुक ने अपनी कंपनी का नाम बदलकर मेटा कर दिया है". CNN Business. Retrieved May 7, 2022.
  2. Inside the Lab: Building for the metaverse with AI (in English), retrieved 2022-05-08
  3. 3.0 3.1 "फेसबुक एआई अनुसंधान आगे कहां बढ़ता है". TechCrunch (in English). 5 December 2018. Retrieved 2022-05-08.
  4. "NYU "डीप लर्निंग" प्रोफेसर लेकुन फेसबुक की नई आर्टिफिशियल इंटेलिजेंस लैब के प्रमुख होंगे". TechCrunch (in English). 9 December 2013. Retrieved 2022-05-08.
  5. "यान लेकुन - ए.एम. ट्यूरिंग पुरस्कार विजेता". amturing.acm.org. Retrieved 2022-05-08.
  6. 6.0 6.1 6.2 "FAIR turns five: What we've accomplished and where we're headed". Engineering at Meta (in English). 2018-12-05. Retrieved 2022-05-08.
  7. Metz, Cade (December 12, 2013). "फेसबुक के 'डीप लर्निंग' गुरु ने एआई के भविष्य का खुलासा किया". Wired Business. Retrieved May 7, 2022.
  8. "फेसबुक की एआई टीम ने लोकप्रिय सपोर्ट वेक्टर मशीन एल्गोरिदम के जनक व्लादिमीर वाप्निक को काम पर रखा है". VentureBeat (in English). 2014-11-25. Retrieved 2022-05-08.
  9. Dillet, Romain (June 2, 2015). "फेसबुक ने पेरिस में नया एआई रिसर्च सेंटर खोला". TechCrunch. Retrieved May 7, 2022.
  10. "फेसबुक ने पेरिस में नया एआई रिसर्च सेंटर खोला". TechCrunch (in English). 2 June 2015. Retrieved 2022-05-08.
  11. Dave, Greshgorn (January 23, 2018). "फेसबुक के एआई अनुसंधान के प्रमुख एक नई भूमिका में कदम रख रहे हैं क्योंकि यह प्रबंधन को हिला देता है". Quartz. Retrieved May 7, 2022.
  12. Chuvpilo, Gleb (2021-05-19). "Who's Ahead in AI Research? Insights from NIPS, Most Prestigious AI Conference". Medium (in English). Retrieved 2022-05-08.
  13. Chuvpilo, Gleb (2021-05-19). "AI Research Rankings 2019: Insights from NeurIPS and ICML, Leading AI Conferences". Medium (in English). Retrieved 2022-05-08.
  14. Chuvpilo, Gleb (2021-05-19). "AI Research Rankings 2020: Can the United States Stay Ahead of China?". Medium (in English). Retrieved 2022-05-08.
  15. Shead, Sam. "Facebook Plans To Double Size Of AI Research Unit By 2020". Forbes (in English). Retrieved 2022-05-08.
  16. Karpathy, Andrej. "पिएटोरच तो टेस्ला है - आंद्रेज करपथी, टेस्ला". YouTube.
  17. "अग्निछाया". pyro.ai. Retrieved 2022-05-08.
  18. 18.0 18.1 "फेसबुक के शोधकर्ताओं ने एआई बॉट्स को बंद कर दिया जो मनुष्यों के लिए समझ से बाहर की भाषा बोलने लगे थे- प्रौद्योगिकी समाचार, फ़र्स्टपोस्ट". Tech2. 2017-07-31. Retrieved 2022-05-08.
  19. Magid, Larry. "फेसबुक के एआई प्रयोग के बारे में डिस्टॉपियन डर अत्यधिक अतिरंजित है". Forbes (in English). Retrieved 2022-05-08.
  20. "Meta's new AI just predicted the shape of 600 million proteins in 2 weeks". Live Science. November 4, 2022.
  21. "Inside the Lab: Building for the Metaverse With AI". Meta (in English). 2022-02-23. Retrieved 2022-05-08.
  22. "मेटा एआई अनुसंधान विषय - कंप्यूटर विजन". ai.facebook.com (in English). Retrieved 2022-05-08.
  23. "पैनाप्टिक विभाजन के माध्यम से दृश्य समझ में सुधार करना". ai.facebook.com (in English). Retrieved 2022-05-08.
  24. Shah, Meet; Chen, Xinlei; Rohrbach, Marcus; Parikh, Devi (2019-02-14). "मजबूत दृश्य प्रश्न उत्तर के लिए चक्र-संगति". arXiv:1902.05660 [cs.CV].
  25. "मेटा एआई अनुसंधान विषय - प्राकृतिक भाषा प्रसंस्करण". ai.facebook.com (in English). Retrieved 2022-05-08.
  26. Lample, Guillaume; Ott, Myle; Conneau, Alexis; Denoyer, Ludovic; Ranzato, Marc'Aurelio (2018-08-13). "वाक्यांश-आधारित और तंत्रिका अपर्यवेक्षित मशीनी अनुवाद". arXiv:1804.07755 [cs.CL].
  27. Conneau, Alexis; Lample, Guillaume; Rinott, Ruty; Williams, Adina; Bowman, Samuel R.; Schwenk, Holger; Stoyanov, Veselin (2018-09-13). "XNLI: Evaluating Cross-lingual Sentence Representations". arXiv:1809.05053 [cs.CL].
  28. See, Abigail; Roller, Stephen; Kiela, Douwe; Weston, Jason (2019-04-10). "What makes a good conversation? How controllable attributes affect human judgments". arXiv:1902.08654 [cs.CL].
  29. Shuster, Kurt; Humeau, Samuel; Hu, Hexiang; Bordes, Antoine; Weston, Jason (2019-03-20). "व्यक्तित्व के माध्यम से आकर्षक छवि कैप्शनिंग". arXiv:1810.10665 [cs.CV].
  30. Fan, Angela; Lewis, Mike; Dauphin, Yann (2018-05-13). "पदानुक्रमित तंत्रिका कहानी पीढ़ी". arXiv:1805.04833 [cs.CL].
  31. "तेज़ एनएलपी विकास के लिए ओपन-सोर्सिंग PyText". Engineering at Meta (in English). 2018-12-14. Retrieved 2022-05-08.
  32. "Introducing LLaMA: A foundational, 65-billion-parameter language model". ai.facebook.com (in English). Retrieved 2023-02-26.
  33. "मेटा एआई अनुसंधान विषय - रैंकिंग और सिफारिशें". ai.facebook.com (in English). Retrieved 2022-05-08.
  34. "ओपन-सोर्सिंग रीएजेंट, तर्क प्रणाली के निर्माण के लिए एक मॉड्यूलर, एंड-टू-एंड प्लेटफॉर्म". ai.facebook.com (in English). Retrieved 2022-05-08.
  35. "मेटा एआई अनुसंधान विषय - सिस्टम अनुसंधान". ai.facebook.com (in English). Retrieved 2022-05-08.
  36. "मेटा एआई अनुसंधान विषय - सिद्धांत". ai.facebook.com (in English). Retrieved 2022-05-08.
  37. "MTIA v1: Meta's first-generation AI inference accelerator". ai.facebook.com (in English). Retrieved 2023-06-07.
  38. "मेटा प्रशिक्षण अनुमान त्वरक (एमटीआईए) की व्याख्या". encord.com (in British English). Retrieved 2023-06-07.
  39. Peters, Jay (2023-05-19). "मेटा AI के लिए एक नई चिप पर काम कर रहा है". The Verge (in English). Retrieved 2023-06-07.