मॉरिस विधि: Difference between revisions
(→μ*) |
|||
Line 10: | Line 10: | ||
मॉरिस के मूल कार्य में, प्रस्तावित दो संवेदनशीलता माप माध्य यथार्थता μ और मानक विचलन σ, थे जो Fi के लिए होते थे। यद्यपि, मॉरिस विधि का चयन करने का एक दुष्प्रभाव है कि यदि वितरण Fi में नकारात्मक तत्व होते हैं, जो सामान्यतः प्रारूप गैर-एकार्यात्मक होने पर होता है, तो माध्य गणना के समय कुछ प्रभाव एक दूसरे को समाप्त कर सकते हैं।इस प्रकार, महत्व के क्रम में श्रेणीबद्ध कारकों के लिए माप μ अपने आप में विश्वसनीय नहीं है।<ref name="Campolongo 2004" />निश्चित रूप से, μ और σ के मानों का एक साथ विचार करना आवश्यक होता है। यदि किसी कारक का प्रभाव अलग-अलग चिन्हों का होता है तो उसका मान μ से कम हो सकता है, परंतु σ का एक महत्वपूर्ण मूल्य जो कारकों को कम आंकने से बचाता है | मॉरिस के मूल कार्य में, प्रस्तावित दो संवेदनशीलता माप माध्य यथार्थता μ और मानक विचलन σ, थे जो Fi के लिए होते थे। यद्यपि, मॉरिस विधि का चयन करने का एक दुष्प्रभाव है कि यदि वितरण Fi में नकारात्मक तत्व होते हैं, जो सामान्यतः प्रारूप गैर-एकार्यात्मक होने पर होता है, तो माध्य गणना के समय कुछ प्रभाव एक दूसरे को समाप्त कर सकते हैं।इस प्रकार, महत्व के क्रम में श्रेणीबद्ध कारकों के लिए माप μ अपने आप में विश्वसनीय नहीं है।<ref name="Campolongo 2004" />निश्चित रूप से, μ और σ के मानों का एक साथ विचार करना आवश्यक होता है। यदि किसी कारक का प्रभाव अलग-अलग चिन्हों का होता है तो उसका मान μ से कम हो सकता है, परंतु σ का एक महत्वपूर्ण मूल्य जो कारकों को कम आंकने से बचाता है | ||
===μ*=== | ===μ*=== | ||
यदि वितरण | यदि वितरण 'Fi' में नकारात्मक तत्व सम्मिलित होते हैं, जो प्रारूप गैर-एकरेखी होने के समय होता है, तो औसत गणना करते समय कुछ प्रभाव एक दूसरे को निरसित कर सकते हैं। जब लक्ष्य एकल संवेदनशीलता माप का उपयोग करके प्राथमिकता के क्रम में कारकों को श्रेणीबद्ध किया जाता है, तथा वैज्ञानिक मत है कि μ∗ का उपयोग किया जाए, जो निरपेक्ष मान का उपयोग करके, विपरीत संकेतों के प्रभाव की घटना से बचाता है। क्योंकि इसमें वैद्युतिक मान का उपयोग किया जाता है।<ref name="Campolongo 2004" /> | ||
पुनर्विचारित मोरिस विधि में μ* का उपयोग किया जाता है ताकि आउटपुट पर संपूर्ण प्रभाव वाले इनपुट कारकों की पहचान की जा सके। σ का उपयोग इनपुट कारकों की पहचान करने के लिए किया जाता है जो अन्य कारकों के साथ संवेग के संपर्क में होते हैं या जिनका प्रभाव गैर-रैखिक होता है।<ref name="Campolongo 2004" /> | |||
Revision as of 11:28, 2 July 2023
एकीकृत सांख्यिकी में, मॉरिस विधि वैश्विक संवेदनशीलता विश्लेषण के लिए एक सांख्यिकीय विधि है जिसे वन-स्टेप-एट-ए-टाइम विधि (ओएटी) कहा जाता है, जिसका अर्थ है कि प्रत्येक दौड़ में केवल एक इनपुट पैरामीटर को एक नया मूल्य दिया जाता है।यह विश्लेषण विधि प्रत्येक इनपुट पैरामीटर के लिए विश्वसनीयता विश्लेषण का समर्थन करती है, जिसमें प्रायोगिक रूप से संभव मूल्य सीमा के विभिन्न बिंदुओं x(1 → r) पर r की संख्या में स्थानीय परिवर्तन किए जाते हैं।
विधि का विवरण
प्राथमिक प्रभाव 'वितरण
Iवें इनपुट कारक से जुड़े प्राथमिक प्रभावों का परिमित वितरण, यादृच्छिक रूप से भिन्न x को Ω से प्रतिरूपण करके प्राप्त किया जाता है, और इसे Fi द्वारा निरूपित किया जाता है[1]
विविधताएं
मॉरिस के मूल कार्य में, प्रस्तावित दो संवेदनशीलता माप माध्य यथार्थता μ और मानक विचलन σ, थे जो Fi के लिए होते थे। यद्यपि, मॉरिस विधि का चयन करने का एक दुष्प्रभाव है कि यदि वितरण Fi में नकारात्मक तत्व होते हैं, जो सामान्यतः प्रारूप गैर-एकार्यात्मक होने पर होता है, तो माध्य गणना के समय कुछ प्रभाव एक दूसरे को समाप्त कर सकते हैं।इस प्रकार, महत्व के क्रम में श्रेणीबद्ध कारकों के लिए माप μ अपने आप में विश्वसनीय नहीं है।[1]निश्चित रूप से, μ और σ के मानों का एक साथ विचार करना आवश्यक होता है। यदि किसी कारक का प्रभाव अलग-अलग चिन्हों का होता है तो उसका मान μ से कम हो सकता है, परंतु σ का एक महत्वपूर्ण मूल्य जो कारकों को कम आंकने से बचाता है
μ*
यदि वितरण 'Fi' में नकारात्मक तत्व सम्मिलित होते हैं, जो प्रारूप गैर-एकरेखी होने के समय होता है, तो औसत गणना करते समय कुछ प्रभाव एक दूसरे को निरसित कर सकते हैं। जब लक्ष्य एकल संवेदनशीलता माप का उपयोग करके प्राथमिकता के क्रम में कारकों को श्रेणीबद्ध किया जाता है, तथा वैज्ञानिक मत है कि μ∗ का उपयोग किया जाए, जो निरपेक्ष मान का उपयोग करके, विपरीत संकेतों के प्रभाव की घटना से बचाता है। क्योंकि इसमें वैद्युतिक मान का उपयोग किया जाता है।[1]
पुनर्विचारित मोरिस विधि में μ* का उपयोग किया जाता है ताकि आउटपुट पर संपूर्ण प्रभाव वाले इनपुट कारकों की पहचान की जा सके। σ का उपयोग इनपुट कारकों की पहचान करने के लिए किया जाता है जो अन्य कारकों के साथ संवेग के संपर्क में होते हैं या जिनका प्रभाव गैर-रैखिक होता है।[1]
विधि के कदम
विधि सभी इनपुट चर के लिए संभावित मानों की परिभाषित सीमाओं के भीतर प्रारंभ मानों के एक सेट का नमूना लेकर शुरू होती है और बाद के प्रारूप के परिणाम की गणना करती है। दूसरा चरण एक चर के मानों को बदलता है (अन्य सभी इनपुट उनके प्रारंभ मूल्यों पर शेष हैं) और पहले रन की तुलना में प्रारूप परिणाम में परिणामी परिवर्तन की गणना करता है। इसके बाद, दूसरे चर के मानों को बदल दिया जाता है (पिछले चर को उसके बदले हुए मूल्य पर रखा जाता है और अन्य सभी को उनके शुरुआती मूल्यों पर रखा जाता है) और दूसरे रन की तुलना में प्रारूप परिणाम में परिणामी परिवर्तन की गणना की जाती है। यह तब तक चलता रहता है जब तक कि सभी इनपुट चर बदल नहीं जाते। इस प्रक्रिया को r बार दोहराया जाता है (जहाँ r को आमतौर पर 5 और 15 के बीच लिया जाता है), हर बार स्टार्ट वैल्यू के एक अलग सेट के साथ, जो कई r(k + 1) रन की ओर जाता है, जहाँ k इनपुट वेरिएबल्स की संख्या है . संवेदनशीलता विश्लेषण के लिए अधिक मांग वाले तरीकों की तुलना में ऐसी संख्या बहुत कुशल है।[2] बड़े आयाम वाले प्रारूप में स्क्रीन कारकों के लिए व्यापक रूप से उपयोग की जाने वाली एक संवेदनशीलता विश्लेषण विधि मॉरिस द्वारा प्रस्तावित डिजाइन है।[3] मॉरिस विधि प्रारूप के बारे में सख्त धारणाओं पर भरोसा किए बिना सैकड़ों इनपुट कारकों वाले प्रारूप के साथ कुशलतापूर्वक व्यवहार करती है, जैसे उदाहरण के लिए प्रारूप इनपुट-आउटपुट संबंध की एडिटिविटी या मोनोटोनिकिटी। मॉरिस विधि समझने और लागू करने में सरल है, और इसके परिणामों की आसानी से व्याख्या की जाती है। इसके अलावा, यह इस मायने में आर्थिक है कि इसके लिए कई प्रारूप मूल्यांकन की आवश्यकता होती है जो कि प्रारूप कारकों की संख्या में रैखिक है। विधि को वैश्विक माना जा सकता है क्योंकि इनपुट स्थान के विभिन्न बिंदुओं पर गणना की गई कई स्थानीय उपायों (प्राथमिक प्रभाव) के औसत से अंतिम उपाय प्राप्त किया जाता है।[2]
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 Andrea Saltelli; Stefano Tarantola; Francesca Campolongo; Marco Ratto (2004). Sensitivity analysis in practice: a guide to assessing scientific models. John Willy & Sons, Ltd. pp. 94–120. ISBN 9780470870938.
- ↑ 2.0 2.1 Campolongo, F.; Cariboni, J.; Saltelli, A. (2003). "Sensitivity analysis: the Morris method versus the variance based measures" (PDF).
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Morris, M.D. (1991). "प्रारंभिक कम्प्यूटेशनल प्रयोगों के लिए क्रमगुणित नमूनाकरण योजनाएं" (PDF). Technometrics. 33 (2): 161–174. CiteSeerX 10.1.1.584.521. doi:10.2307/1269043. JSTOR 1269043.
बाहरी संबंध
- Morris method paper
- Campolongo, F., S. Tarantola and A. Saltelli. (1999). "Tackling quantitatively large dimensionality problems". Computer Physics Communications. 1999 (1–2): 75–85. Bibcode:1999CoPhC.117...75C. doi:10.1016/S0010-4655(98)00165-9.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)