डिरिचलेट L-फलन: Difference between revisions

From Vigyanwiki
m (Sugatha moved page डिरिचलेट एल-फलन to डिरिचलेट L-फलन without leaving a redirect)
No edit summary
Line 1: Line 1:
{{DISPLAYTITLE:Dirichlet ''L''-function}}
{{DISPLAYTITLE:Dirichlet ''L''-function}}


गणित में, '''डिरिचलेट ''L''-श्रृंखला''' फॉर्म का एक फंक्शन (फलन) है।
गणित में, '''डिरिचलेट ''L''-श्रृंखला''' फॉर्म का एक फलन (फलन) है।


:<math>L(s,\chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}.</math>
:<math>L(s,\chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}.</math>
जहां <math> \chi </math> [[डिरिचलेट चरित्र|डिरिचलेट]] वर्ण है और [[जटिल चर]] है जिसका वास्तविक भाग 1 से अधिक है। यह [[डिरिचलेट श्रृंखला]] का एक विशेष स्तिथि है। [[विश्लेषणात्मक निरंतरता]] द्वारा, इसे पूरे जटिल समतल पर [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फंक्शन]] तक बढ़ाया जा सकता है और फिर इसे डिरिचलेट ''L''-फंक्शन कहा जाता है और ''L''(''s'', ''χ'') भी दर्शाया जाता है।
जहां <math> \chi </math> [[डिरिचलेट चरित्र|डिरिचलेट]] वर्ण है और [[जटिल चर]] है जिसका वास्तविक भाग 1 से अधिक है। यह [[डिरिचलेट श्रृंखला]] का एक विशेष स्तिथि है। [[विश्लेषणात्मक निरंतरता]] द्वारा, इसे पूरे जटिल समतल पर [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फलन]] तक बढ़ाया जा सकता है और फिर इसे डिरिचलेट ''L''-फलन कहा जाता है और ''L''(''s'', ''χ'') भी दर्शाया जाता है।


इन फ़ंक्शंस का नाम [[पीटर गुस्ताव लेज्यून डिरिचलेट]] के नाम पर रखा गया है जिन्होंने अंकगणितीय प्रगति में अभाज्य पर प्रमेय को साबित करने के लिए इन्हें (डिरिचलेट 1837) में पेश किया था जिसमें उनका नाम भी सम्मिलित है। प्रमाण के क्रम में, डिरिचलेट दर्शाता है कि ''s = 1'' पर {{Nowrap|''L''(''s'', ''χ'')}} गैर-शून्य है। इसके अलावा, यदि ''χ'' प्रिंसिपल है, तो संबंधित डिरिचलेट ''L''-फंक्शन में ''s = 1'' पर एक सरल ध्रुव होता है। अन्यथा, ''L''-फंक्शन संपूर्ण होता है।
इन फ़ंक्शंस का नाम [[पीटर गुस्ताव लेज्यून डिरिचलेट]] के नाम पर रखा गया है जिन्होंने अंकगणितीय प्रगति में अभाज्य पर प्रमेय को साबित करने के लिए इन्हें (डिरिचलेट 1837) में पेश किया था जिसमें उनका नाम भी सम्मिलित है। प्रमाण के क्रम में, डिरिचलेट दर्शाता है कि ''s = 1'' पर {{Nowrap|''L''(''s'', ''χ'')}} गैर-शून्य है। इसके अलावा, यदि ''χ'' प्रिंसिपल है, तो संबंधित डिरिचलेट ''L''-फलन में ''s = 1'' पर एक सरल ध्रुव होता है। अन्यथा, ''L''-फलन संपूर्ण होता है।


==[[यूलर उत्पाद|यूलर गुणनफल]]==
==[[यूलर उत्पाद|यूलर गुणनफल]]==
चूँकि डिरिचलेट वर्ण χ पूरी तरह से गुणक है, इसलिए इसका ''L''-फंक्शन [[पूर्ण अभिसरण]] के आधे-तल में यूलर गुणनफल के रूप में भी लिखा जा सकता है:
चूँकि डिरिचलेट वर्ण χ पूरी तरह से गुणक है, इसलिए इसका ''L''-फलन [[पूर्ण अभिसरण]] के आधे-तल में यूलर गुणनफल के रूप में भी लिखा जा सकता है:
:<math>L(s,\chi)=\prod_p\left(1-\chi(p)p^{-s}\right)^{-1}\text{ for }\text{Re}(s) > 1,</math>
:<math>L(s,\chi)=\prod_p\left(1-\chi(p)p^{-s}\right)^{-1}\text{ for }\text{Re}(s) > 1,</math>
जहां गुणनफल सभी [[अभाज्य संख्या]]ओं से अधिक है।<ref>{{harvnb|Apostol|1976|loc=Theorem 11.7}}</ref>
जहां गुणनफल सभी [[अभाज्य संख्या]]ओं से अधिक है।<ref>{{harvnb|Apostol|1976|loc=Theorem 11.7}}</ref>
Line 15: Line 15:
==अभाज्य गुण==
==अभाज्य गुण==


''L''-फंक्शन के बारे में परिणाम प्रायः अधिक सरलता से बताए जाते हैं यदि गुण को अभाज्य माना जाता है, हालांकि परिणाम सामान्यतः छोटी जटिलताओं के साथ अप्रभावी गुणों तक बढ़ाए जा सकते हैं।<ref>{{harvnb|Davenport|2000|loc=chapter 5}}</ref> इसका कारण अभाज्य गुण के बीच का संबंध है  <math>\chi</math> और अभाज्य गुण <math>\chi^\star</math> मैं जो इसे प्रेरित करता है:<ref>{{harvnb|Davenport|2000|loc=chapter 5, equation (2)}}</ref>
''L''-फलन के बारे में परिणाम प्रायः अधिक सरलता से बताए जाते हैं यदि गुण को अभाज्य माना जाता है, हालांकि परिणाम सामान्यतः छोटी जटिलताओं के साथ अप्रभावी गुणों तक बढ़ाए जा सकते हैं।<ref>{{harvnb|Davenport|2000|loc=chapter 5}}</ref> इसका कारण अभाज्य गुण के बीच का संबंध है  <math>\chi</math> और अभाज्य गुण <math>\chi^\star</math> मैं जो इसे प्रेरित करता है:<ref>{{harvnb|Davenport|2000|loc=chapter 5, equation (2)}}</ref>
:<math>
:<math>
   \chi(n) =
   \chi(n) =
Line 23: Line 23:
     \end{cases}
     \end{cases}
</math>
</math>
(यहाँ, q χ का मापांक है।) यूलर गुणनफल का अनुप्रयोग संबंधित ''L''-फंक्शन के बीच सरल संबंध देता है:<ref>{{harvnb|Davenport|2000|loc=chapter 5, equation (3)}}</ref><ref>{{harvnb|Montgomery|Vaughan|2006|p=282}}</ref>  
(यहाँ, q χ का मापांक है।) यूलर गुणनफल का अनुप्रयोग संबंधित ''L''-फलन के बीच सरल संबंध देता है:<ref>{{harvnb|Davenport|2000|loc=chapter 5, equation (3)}}</ref><ref>{{harvnb|Montgomery|Vaughan|2006|p=282}}</ref>  
:<math>
:<math>
   L(s,\chi) = L(s,\chi^\star) \prod_{p \,|\, q}\left(1 - \frac{\chi^\star(p)}{p^s} \right)
   L(s,\chi) = L(s,\chi^\star) \prod_{p \,|\, q}\left(1 - \frac{\chi^\star(p)}{p^s} \right)
</math>
</math>
(यह सूत्र विश्लेषणात्मक निरंतरता द्वारा सभी s के लिए मान्य है, भले ही यूलर गुणनफल केवल तभी मान्य है जब Re(s) > 1.)  सूत्र से पता चलता है कि χ का ''L''-फंक्शन आदिम चरित्र के ''L''-फंक्शन के बराबर है जो χ को प्रेरित करता है, केवल सीमित संख्या में कारकों से गुणा किया जाता है।<ref>{{harvnb|Apostol|1976|p=262}}</ref>
(यह सूत्र विश्लेषणात्मक निरंतरता द्वारा सभी s के लिए मान्य है, भले ही यूलर गुणनफल केवल तभी मान्य है जब Re(s) > 1.)  सूत्र से पता चलता है कि χ का ''L''-फलन आदिम चरित्र के ''L''-फलन के बराबर है जो χ को प्रेरित करता है, केवल सीमित संख्या में कारकों से गुणा किया जाता है।<ref>{{harvnb|Apostol|1976|p=262}}</ref>


विशेष स्तिथि के रूप में, मुख्य गुण का ''L''-फंक्शन <math>\chi_0</math> मॉड्यूलो क्यू को [[रीमैन ज़ेटा फ़ंक्शन|रीमैन ज़ेटा फंक्शन]] के संदर्भ में व्यक्त किया जा सकता है:<ref>{{harvnb|Ireland|Rosen|1990|loc=chapter 16, section 4}}</ref><ref>{{harvnb|Montgomery|Vaughan|2006|p=121}}</ref>
विशेष स्तिथि के रूप में, मुख्य गुण का ''L''-फलन <math>\chi_0</math> मॉड्यूलो q को [[रीमैन ज़ेटा फ़ंक्शन|रीमैन ज़ेटा फलन]] के संदर्भ में व्यक्त किया जा सकता है:<ref>{{harvnb|Ireland|Rosen|1990|loc=chapter 16, section 4}}</ref><ref>{{harvnb|Montgomery|Vaughan|2006|p=121}}</ref>
:<math>
:<math>
   L(s,\chi_0) = \zeta(s) \prod_{p \,|\, q}(1 - p^{-s})
   L(s,\chi_0) = \zeta(s) \prod_{p \,|\, q}(1 - p^{-s})
</math>
</math>


==[[कार्यात्मक समीकरण|फलनीयसमीकरण]]==
==[[कार्यात्मक समीकरण|फलनीय समीकरण]]==


डिरिचलेट ''L''-फंक्शन फलनीयसमीकरण को संतुष्ट करते हैं, जो उन्हें पूरे जटिल समतल में विश्लेषणात्मक रूप से प्रवृत्त रखने की विधि प्रदान करता है। फलनीयसमीकरण <math>L(s,\chi)</math> के मान को <math>L(1-s, \overline{\chi})</math> के मान से संबंधित करता है। मान लीजिए कि χ अभाज्य गुण मॉड्यूलो q है, जहां q > 1. फलनीयसमीकरण को व्यक्त करने की एक विधि है:<ref name="MontgomeryVaughan333" />
डिरिचलेट ''L''-फलन फलनीयसमीकरण को संतुष्ट करते हैं, जो उन्हें पूरे जटिल समतल में विश्लेषणात्मक रूप से प्रवृत्त रखने की विधि प्रदान करता है। फलनीयसमीकरण <math>L(s,\chi)</math> के मान को <math>L(1-s, \overline{\chi})</math> के मान से संबंधित करता है। मान लीजिए कि χ अभाज्य गुण मॉड्यूलो q है, जहां q > 1. फलनीयसमीकरण को व्यक्त करने की एक विधि है:<ref name="MontgomeryVaughan333" />


<math>L(s,\chi) = \varepsilon(\chi) 2^s \pi^{s-1} q^{1/2-s} \sin \left( \frac{\pi}{2} (s + a) \right)  \Gamma(1-s) L(1-s, \overline{\chi}).</math>
<math>L(s,\chi) = \varepsilon(\chi) 2^s \pi^{s-1} q^{1/2-s} \sin \left( \frac{\pi}{2} (s + a) \right)  \Gamma(1-s) L(1-s, \overline{\chi}).</math>


इस समीकरण में, Γ [[गामा फ़ंक्शन|गामा फंक्शन]] को दर्शाता है; a 0 है यदि χ(−1) = 1,या 1 यदि χ(−1) = −1; और
इस समीकरण में, Γ [[गामा फ़ंक्शन|गामा फलन]] को दर्शाता है; a 0 है यदि χ(−1) = 1,या 1 यदि χ(−1) = −1; और
::<math>\varepsilon(\chi) = \frac{\tau(\chi)}{i^a \sqrt{q}}</math>
::<math>\varepsilon(\chi) = \frac{\tau(\chi)}{i^a \sqrt{q}}</math>
:::::
:::::::::::::::::
::::::::::::::::::::
जहां τ&hairsp;(&hairsp;χ) एक गॉस योग है:
जहां τ&hairsp;(&hairsp;χ) एक गॉस योग है:
:<math>\tau(\chi) = \sum_{n=1}^q \chi(n)\exp(2\pi in/q).</math>
:<math>\tau(\chi) = \sum_{n=1}^q \chi(n)\exp(2\pi in/q).</math>
Line 55: Line 52:
<math>\xi(s,\chi) = \varepsilon(\chi) \xi(1-s,\overline{\chi}).</math>
<math>\xi(s,\chi) = \varepsilon(\chi) \xi(1-s,\overline{\chi}).</math>


फलनीयसमीकरण का तात्पर्य यह है <math>L(s,\chi)</math> (और <math>\xi(s,\chi)</math>) s का संपूर्ण फंक्शन है। (फिर से, यह माना जाता है कि χ q > 1 के साथ अभाज्य गुण मॉड्यूलो q है।
फलनीयसमीकरण का तात्पर्य यह है <math>L(s,\chi)</math> (और <math>\xi(s,\chi)</math>) s का संपूर्ण फलन है। (फिर से, यह माना जाता है कि χ q > 1 के साथ अभाज्य गुण मॉड्यूलो q है।


यदि q = 1 है, तो <math>L(s,\chi) = \zeta(s)</math> s = 1 पर एक ध्रुव है।)<ref name="MontgomeryVaughan333">{{harvnb|Montgomery|Vaughan|2006|p=333}}</ref><ref name="IwaniecKowalski84" />
यदि q = 1 है, तो <math>L(s,\chi) = \zeta(s)</math> s = 1 पर एक ध्रुव है।)<ref name="MontgomeryVaughan333">{{harvnb|Montgomery|Vaughan|2006|p=333}}</ref><ref name="IwaniecKowalski84" />


सामान्यीकरण के लिए, देखें: [[कार्यात्मक समीकरण (एल-फ़ंक्शन)|फलनीयसमीकरण (''L''-फंक्शन)]]।
सामान्यीकरण के लिए, देखें: [[कार्यात्मक समीकरण (एल-फ़ंक्शन)|फलनीयसमीकरण (''L''-फलन)]]।


==शून्य==
==शून्य==
[[Image:Mplwp dirichlet beta.svg|thumb|right|300px|डिरिचलेट ''L''-फंक्शन एल(एस, χ) = 1 − 3<sup>−s</sup>+5<sup>−s</sup> − 7<sup>−s</sup> + ⋅⋅⋅ (कभी-कभी विशेष नाम [[डिरिचलेट बीटा फ़ंक्शन|डिरिचलेट बीटा फंक्शन]] दिया जाता है), ऋणात्मक विषम पूर्णांकों पर तुच्छ शून्य के साथ]]मान लीजिए χ q > 1 के साथ अभाज्य गुण मॉड्यूल q है।
[[Image:Mplwp dirichlet beta.svg|thumb|right|300px|डिरिचलेट ''L''-फलन एल(एस, χ) = 1 − 3<sup>−s</sup>+5<sup>−s</sup> − 7<sup>−s</sup> + ⋅⋅⋅ (कभी-कभी विशेष नाम [[डिरिचलेट बीटा फ़ंक्शन|डिरिचलेट बीटा फलन]] दिया जाता है), ऋणात्मक विषम पूर्णांकों पर तुच्छ शून्य के साथ]]मान लीजिए χ q > 1 के साथ अभाज्य गुण मॉड्यूल q है।


Re(s) > 1 के साथ L(s, χ) के फंक्शन का कोई शून्य नहीं है। Re(s) < 0 के लिए, कुछ ऋणात्मक [[पूर्णांक]] s पर शून्य होते हैं:
Re(s) > 1 के साथ L(s, χ) के फलन का कोई शून्य नहीं है। Re(s) < 0 के लिए, कुछ ऋणात्मक [[पूर्णांक]] s पर शून्य होते हैं:
* यदि χ(−1) = 1, तो Re(s) < 0 के साथ L(s, χ) के एकमात्र शून्य −2, −4, −6, ... पर साधारण शून्य हैं। (s = 0 पर भी शून्य होता है।) ये <math>\textstyle \Gamma(\frac{s}{2})</math> के ध्रुवों के अनुरूप हैं।<ref name="DavenportCh9">{{harvnb|Davenport|2000|loc=chapter 9}}</ref>
* यदि χ(−1) = 1, तो Re(s) < 0 के साथ L(s, χ) के एकमात्र शून्य −2, −4, −6, ... पर साधारण शून्य हैं। (s = 0 पर भी शून्य होता है।) ये <math>\textstyle \Gamma(\frac{s}{2})</math> के ध्रुवों के अनुरूप हैं।<ref name="DavenportCh9">{{harvnb|Davenport|2000|loc=chapter 9}}</ref>
*यदि χ(−1) = 1, तो Re(s) < 0 के साथ L(s, χ) के एकमात्र शून्य −1, −3, −5, .... पर साधारण शून्य हैं। (s = 0 पर भी शून्य होता है।) ये <math>\textstyle \Gamma(\frac{s+1}{2})</math> के ध्रुवों के अनुरूप हैं।<ref name="DavenportCh9" />
*यदि χ(−1) = 1, तो Re(s) < 0 के साथ L(s, χ) के एकमात्र शून्य −1, −3, −5, .... पर साधारण शून्य हैं। (s = 0 पर भी शून्य होता है।) ये <math>\textstyle \Gamma(\frac{s+1}{2})</math> के ध्रुवों के अनुरूप हैं।<ref name="DavenportCh9" />
Line 72: Line 69:
शेष शून्य क्रांतिक पट्टी 0 ≤ Re(s) ≤ 1 में स्थित होते हैं और इन्हें गैर-नगण्य शून्य कहा जाता है। गैर-नगण्य शून्य महत्वपूर्ण रेखा Re(s) = 1/2 के बारे में सममित हैं। अर्थात्, यदि <math>L(\rho,\chi)=0</math> तो कार्यात्मक समीकरण के कारण <math>L(1-\overline{\rho},\chi)=0</math> भी। यदि χ वास्तविक गुण है, तो गैर-नगण्य शून्य भी वास्तविक अक्ष के बारे में सममित हैं, लेकिन यदि χ जटिल गुण है तो नहीं। [[सामान्यीकृत रीमैन परिकल्पना]] यह अनुमान है कि सभी गैर-तुच्छ शून्य महत्वपूर्ण रेखा Re(s) = 1/2 पर स्थित हैं।<ref name="MontgomeryVaughan333" />
शेष शून्य क्रांतिक पट्टी 0 ≤ Re(s) ≤ 1 में स्थित होते हैं और इन्हें गैर-नगण्य शून्य कहा जाता है। गैर-नगण्य शून्य महत्वपूर्ण रेखा Re(s) = 1/2 के बारे में सममित हैं। अर्थात्, यदि <math>L(\rho,\chi)=0</math> तो कार्यात्मक समीकरण के कारण <math>L(1-\overline{\rho},\chi)=0</math> भी। यदि χ वास्तविक गुण है, तो गैर-नगण्य शून्य भी वास्तविक अक्ष के बारे में सममित हैं, लेकिन यदि χ जटिल गुण है तो नहीं। [[सामान्यीकृत रीमैन परिकल्पना]] यह अनुमान है कि सभी गैर-तुच्छ शून्य महत्वपूर्ण रेखा Re(s) = 1/2 पर स्थित हैं।<ref name="MontgomeryVaughan333" />


[[सीगल शून्य]] के संभावित अस्तित्व तक, रीमैन ज़ेटा फंक्शन के समान रेखा Re(s) = 1 सहित और उससे परे शून्य-मुक्त क्षेत्र सभी डिरिचलेट एल-फ़ंक्शंस के लिए उपस्थित हैं: उदाहरण के लिए, χ के लिए हमारे पास मापांक q का गैर-वास्तविक गुण है
[[सीगल शून्य]] के संभावित अस्तित्व तक, रीमैन ज़ेटा फलन के समान रेखा Re(s) = 1 सहित और उससे परे शून्य-मुक्त क्षेत्र सभी डिरिचलेट एल-फ़ंक्शंस के लिए उपस्थित हैं: उदाहरण के लिए, χ के लिए हमारे पास मापांक q का गैर-वास्तविक गुण है


:<math> \beta < 1 - \frac{c}{\log\!\!\; \big(q(2+|\gamma|)\big)} \ </math>
:<math> \beta < 1 - \frac{c}{\log\!\!\; \big(q(2+|\gamma|)\big)} \ </math>
β + iγ के लिए अवास्तविक शून्य।<ref>{{cite book |last=Montgomery |first=Hugh L. |author-link=Hugh Montgomery (mathematician) |title=विश्लेषणात्मक संख्या सिद्धांत और हार्मोनिक विश्लेषण के बीच इंटरफेस पर दस व्याख्यान|series=Regional Conference Series in Mathematics |volume=84 |location=Providence, RI |publisher=[[American Mathematical Society]] |year=1994 |isbn=0-8218-0737-4 |zbl=0814.11001 |page=163}}</ref>
β + iγ के लिए अवास्तविक शून्य।<ref>{{cite book |last=Montgomery |first=Hugh L. |author-link=Hugh Montgomery (mathematician) |title=विश्लेषणात्मक संख्या सिद्धांत और हार्मोनिक विश्लेषण के बीच इंटरफेस पर दस व्याख्यान|series=Regional Conference Series in Mathematics |volume=84 |location=Providence, RI |publisher=[[American Mathematical Society]] |year=1994 |isbn=0-8218-0737-4 |zbl=0814.11001 |page=163}}</ref>
== [[हर्विट्ज़ ज़ेटा फ़ंक्शन|हर्विट्ज़ ज़ेटा फंक्शन]] से संबंध ==
== [[हर्विट्ज़ ज़ेटा फ़ंक्शन|हर्विट्ज़ ज़ेटा फलन]] से संबंध ==
डिरिचलेट ''L''-फंक्शन को तर्कसंगत मूल्यों पर हर्विट्ज़ ज़ेटा फंक्शन के रैखिक संयोजन के रूप में लिखा जा सकता है। पूर्णांक k ≥ 1 को निश्चित करते हुए, मॉड्यूल k वर्णों के लिए डिरिचलेट ''L''-फंक्शन ζ(s,a) के स्थिर गुणांकों के साथ रैखिक संयोजन हैं, जहां a = r/k और r = 1, 2, ..., k . इसका मतलब यह है कि तर्कसंगत ए के लिए हर्विट्ज़ ज़ेटा फंक्शन में विश्लेषणात्मक गुण हैं जो डिरिचलेट ''L-''फंक्शन से निकटता से संबंधित हैं। विशेष रूप से, मान लीजिए कि χ वर्ण मॉड्यूलो k है। तब हम इसके डिरिचलेट ''L''-फंक्शन को इस प्रकार लिख सकते हैं:<ref>{{harvnb|Apostol|1976|p=249}}</ref>
डिरिचलेट ''L''-फलन को तर्कसंगत मूल्यों पर हर्विट्ज़ ज़ेटा फलन के रैखिक संयोजन के रूप में लिखा जा सकता है। पूर्णांक k ≥ 1 को निश्चित करते हुए, मॉड्यूल k वर्णों के लिए डिरिचलेट ''L''-फलन ζ(s,a) के स्थिर गुणांकों के साथ रैखिक संयोजन हैं, जहां a = r/k और r = 1, 2, ..., k . इसका मतलब यह है कि तर्कसंगत ए के लिए हर्विट्ज़ ज़ेटा फलन में विश्लेषणात्मक गुण हैं जो डिरिचलेट ''L-''फलन से निकटता से संबंधित हैं। विशेष रूप से, मान लीजिए कि χ वर्ण मॉड्यूलो k है। तब हम इसके डिरिचलेट ''L''-फलन को इस प्रकार लिख सकते हैं:<ref>{{harvnb|Apostol|1976|p=249}}</ref>
:<math>L(s,\chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}
:<math>L(s,\chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}
= \frac{1}{k^s} \sum_{r=1}^k \chi(r) \operatorname{\zeta}\left(s,\frac{r}{k}\right).</math>
= \frac{1}{k^s} \sum_{r=1}^k \chi(r) \operatorname{\zeta}\left(s,\frac{r}{k}\right).</math>
==यह भी देखें==
==यह भी देखें==


*सामान्यीकृत रीमैन परिकल्पना
*सामान्यीकृत रीमैन परिकल्पना
*''[[एल-फ़ंक्शन|L]]''[[एल-फ़ंक्शन|-फंक्शन]]
*''[[एल-फ़ंक्शन|L]]''[[एल-फ़ंक्शन|-फलन]]
*[[मॉड्यूलैरिटी प्रमेय]]
*[[मॉड्यूलैरिटी प्रमेय]]
*[[आर्टिन अनुमान (एल-फ़ंक्शन)|आर्टिन अनुमान (''L''-फंक्शन)]]
*[[आर्टिन अनुमान (एल-फ़ंक्शन)|आर्टिन अनुमान (''L''-फलन)]]
*''[[एल-फ़ंक्शन के विशेष मान|L]]''[[एल-फ़ंक्शन के विशेष मान|-फंक्शन के विशेष मान]]
*''[[एल-फ़ंक्शन के विशेष मान|L]]''[[एल-फ़ंक्शन के विशेष मान|-फलन के विशेष मान]]


==टिप्पणियाँ==
==टिप्पणियाँ==

Revision as of 14:03, 7 July 2023


गणित में, डिरिचलेट L-श्रृंखला फॉर्म का एक फलन (फलन) है।

जहां डिरिचलेट वर्ण है और जटिल चर है जिसका वास्तविक भाग 1 से अधिक है। यह डिरिचलेट श्रृंखला का एक विशेष स्तिथि है। विश्लेषणात्मक निरंतरता द्वारा, इसे पूरे जटिल समतल पर मेरोमोर्फिक फलन तक बढ़ाया जा सकता है और फिर इसे डिरिचलेट L-फलन कहा जाता है और L(s, χ) भी दर्शाया जाता है।

इन फ़ंक्शंस का नाम पीटर गुस्ताव लेज्यून डिरिचलेट के नाम पर रखा गया है जिन्होंने अंकगणितीय प्रगति में अभाज्य पर प्रमेय को साबित करने के लिए इन्हें (डिरिचलेट 1837) में पेश किया था जिसमें उनका नाम भी सम्मिलित है। प्रमाण के क्रम में, डिरिचलेट दर्शाता है कि s = 1 पर L(s, χ) गैर-शून्य है। इसके अलावा, यदि χ प्रिंसिपल है, तो संबंधित डिरिचलेट L-फलन में s = 1 पर एक सरल ध्रुव होता है। अन्यथा, L-फलन संपूर्ण होता है।

यूलर गुणनफल

चूँकि डिरिचलेट वर्ण χ पूरी तरह से गुणक है, इसलिए इसका L-फलन पूर्ण अभिसरण के आधे-तल में यूलर गुणनफल के रूप में भी लिखा जा सकता है:

जहां गुणनफल सभी अभाज्य संख्याओं से अधिक है।[1]

अभाज्य गुण

L-फलन के बारे में परिणाम प्रायः अधिक सरलता से बताए जाते हैं यदि गुण को अभाज्य माना जाता है, हालांकि परिणाम सामान्यतः छोटी जटिलताओं के साथ अप्रभावी गुणों तक बढ़ाए जा सकते हैं।[2] इसका कारण अभाज्य गुण के बीच का संबंध है और अभाज्य गुण मैं जो इसे प्रेरित करता है:[3]

(यहाँ, q χ का मापांक है।) यूलर गुणनफल का अनुप्रयोग संबंधित L-फलन के बीच सरल संबंध देता है:[4][5]

(यह सूत्र विश्लेषणात्मक निरंतरता द्वारा सभी s के लिए मान्य है, भले ही यूलर गुणनफल केवल तभी मान्य है जब Re(s) > 1.)  सूत्र से पता चलता है कि χ का L-फलन आदिम चरित्र के L-फलन के बराबर है जो χ को प्रेरित करता है, केवल सीमित संख्या में कारकों से गुणा किया जाता है।[6]

विशेष स्तिथि के रूप में, मुख्य गुण का L-फलन मॉड्यूलो q को रीमैन ज़ेटा फलन के संदर्भ में व्यक्त किया जा सकता है:[7][8]

फलनीय समीकरण

डिरिचलेट L-फलन फलनीयसमीकरण को संतुष्ट करते हैं, जो उन्हें पूरे जटिल समतल में विश्लेषणात्मक रूप से प्रवृत्त रखने की विधि प्रदान करता है। फलनीयसमीकरण के मान को के मान से संबंधित करता है। मान लीजिए कि χ अभाज्य गुण मॉड्यूलो q है, जहां q > 1. फलनीयसमीकरण को व्यक्त करने की एक विधि है:[9]

इस समीकरण में, Γ गामा फलन को दर्शाता है; a 0 है यदि χ(−1) = 1,या 1 यदि χ(−1) = −1; और

जहां τ ( χ) एक गॉस योग है:

यह गॉस योग की एक गुण है जो |τ ( χ) | = q1/2, so |ɛ ( χ) | = 1.[10][11]

फलनीयसमीकरण को ज्ञात करने की दूसरी विधि है:

फलनीयसमीकरण को इस प्रकार व्यक्त किया जा सकता है:[9][11]:

फलनीयसमीकरण का तात्पर्य यह है (और ) s का संपूर्ण फलन है। (फिर से, यह माना जाता है कि χ q > 1 के साथ अभाज्य गुण मॉड्यूलो q है।

यदि q = 1 है, तो s = 1 पर एक ध्रुव है।)[9][11]

सामान्यीकरण के लिए, देखें: फलनीयसमीकरण (L-फलन)

शून्य

डिरिचलेट L-फलन एल(एस, χ) = 1 − 3−s+5−s − 7−s + ⋅⋅⋅ (कभी-कभी विशेष नाम डिरिचलेट बीटा फलन दिया जाता है), ऋणात्मक विषम पूर्णांकों पर तुच्छ शून्य के साथ

मान लीजिए χ q > 1 के साथ अभाज्य गुण मॉड्यूल q है।

Re(s) > 1 के साथ L(s, χ) के फलन का कोई शून्य नहीं है। Re(s) < 0 के लिए, कुछ ऋणात्मक पूर्णांक s पर शून्य होते हैं:

  • यदि χ(−1) = 1, तो Re(s) < 0 के साथ L(s, χ) के एकमात्र शून्य −2, −4, −6, ... पर साधारण शून्य हैं। (s = 0 पर भी शून्य होता है।) ये के ध्रुवों के अनुरूप हैं।[12]
  • यदि χ(−1) = 1, तो Re(s) < 0 के साथ L(s, χ) के एकमात्र शून्य −1, −3, −5, .... पर साधारण शून्य हैं। (s = 0 पर भी शून्य होता है।) ये के ध्रुवों के अनुरूप हैं।[12]

इन्हें नगण्य शून्य कहा जाता है।[9]

शेष शून्य क्रांतिक पट्टी 0 ≤ Re(s) ≤ 1 में स्थित होते हैं और इन्हें गैर-नगण्य शून्य कहा जाता है। गैर-नगण्य शून्य महत्वपूर्ण रेखा Re(s) = 1/2 के बारे में सममित हैं। अर्थात्, यदि तो कार्यात्मक समीकरण के कारण भी। यदि χ वास्तविक गुण है, तो गैर-नगण्य शून्य भी वास्तविक अक्ष के बारे में सममित हैं, लेकिन यदि χ जटिल गुण है तो नहीं। सामान्यीकृत रीमैन परिकल्पना यह अनुमान है कि सभी गैर-तुच्छ शून्य महत्वपूर्ण रेखा Re(s) = 1/2 पर स्थित हैं।[9]

सीगल शून्य के संभावित अस्तित्व तक, रीमैन ज़ेटा फलन के समान रेखा Re(s) = 1 सहित और उससे परे शून्य-मुक्त क्षेत्र सभी डिरिचलेट एल-फ़ंक्शंस के लिए उपस्थित हैं: उदाहरण के लिए, χ के लिए हमारे पास मापांक q का गैर-वास्तविक गुण है

β + iγ के लिए अवास्तविक शून्य।[13]

हर्विट्ज़ ज़ेटा फलन से संबंध

डिरिचलेट L-फलन को तर्कसंगत मूल्यों पर हर्विट्ज़ ज़ेटा फलन के रैखिक संयोजन के रूप में लिखा जा सकता है। पूर्णांक k ≥ 1 को निश्चित करते हुए, मॉड्यूल k वर्णों के लिए डिरिचलेट L-फलन ζ(s,a) के स्थिर गुणांकों के साथ रैखिक संयोजन हैं, जहां a = r/k और r = 1, 2, ..., k . इसका मतलब यह है कि तर्कसंगत ए के लिए हर्विट्ज़ ज़ेटा फलन में विश्लेषणात्मक गुण हैं जो डिरिचलेट L-फलन से निकटता से संबंधित हैं। विशेष रूप से, मान लीजिए कि χ वर्ण मॉड्यूलो k है। तब हम इसके डिरिचलेट L-फलन को इस प्रकार लिख सकते हैं:[14]

यह भी देखें

टिप्पणियाँ

  1. Apostol 1976, Theorem 11.7
  2. Davenport 2000, chapter 5
  3. Davenport 2000, chapter 5, equation (2)
  4. Davenport 2000, chapter 5, equation (3)
  5. Montgomery & Vaughan 2006, p. 282
  6. Apostol 1976, p. 262
  7. Ireland & Rosen 1990, chapter 16, section 4
  8. Montgomery & Vaughan 2006, p. 121
  9. 9.0 9.1 9.2 9.3 9.4 Montgomery & Vaughan 2006, p. 333
  10. Montgomery & Vaughan 2006, p. 332
  11. 11.0 11.1 11.2 Iwaniec & Kowalski 2004, p. 84
  12. 12.0 12.1 Davenport 2000, chapter 9
  13. Montgomery, Hugh L. (1994). विश्लेषणात्मक संख्या सिद्धांत और हार्मोनिक विश्लेषण के बीच इंटरफेस पर दस व्याख्यान. Regional Conference Series in Mathematics. Vol. 84. Providence, RI: American Mathematical Society. p. 163. ISBN 0-8218-0737-4. Zbl 0814.11001.
  14. Apostol 1976, p. 249


संदर्भ