क्रमित प्रारूप: Difference between revisions
(Created page with "{{short description|Isomorphism type of ordered sets}} {{distinguish|text=ordered types}} {{more footnotes|date=February 2023}} गणित में,...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Isomorphism type of ordered sets}} | {{short description|Isomorphism type of ordered sets}} | ||
{{distinguish|text=[[Ordered type system| | {{distinguish|text=[[Ordered type system|क्रमित प्रारूप]]}} | ||
{{more footnotes|date=February 2023}} | {{more footnotes|date=February 2023}} | ||
गणित में, विशेषकर समुच्चय सिद्धांत में, दो क्रमित समुच्चय {{mvar|X}} और {{mvar|Y}} को समान | गणित में, विशेषकर समुच्चय सिद्धांत में, दो क्रमित समुच्चय {{mvar|X}} और {{mvar|Y}} को समान '''क्रमित प्रारूप''' कहा जाता है, यदि वे [[आदेश समरूपी|क्रम समरूप]] हैं, अर्थात, यदि कोई आक्षेप उपस्थित है (प्रत्येक अवयव दूसरे सम्मुचय में यथार्थतः एक के साथ जुड़ता है) <math>f\colon X \to Y</math> ऐसे कि दोनों {{mvar|f}} और इसका व्युत्क्रम तथा एकदिस्ट (अवयवों के क्रम को संरक्षित करना) होता हैं। विशेष स्थिति में जब {{mvar|X}} पूरी तरह से व्यवस्थित है, की एकदिस्टता {{mvar|f}} इसके व्युत्क्रम की एकदिस्टता का तात्पर्य है। | ||
उदाहरण के लिए, [[पूर्णांक]] | उदाहरण के लिए, [[पूर्णांक]] के समुच्चय (गणित) और [[समता (गणित)|सम (गणित)]] पूर्णांकों के समुच्चय का क्रम प्रकार समान होता है, क्योंकि माप <math>n\mapsto 2n</math> आक्षेप है जो क्रम को सुरक्षित रखता है। लेकिन पूर्णांकों के समुच्चय और परिमेय संख्याओं के समुच्चय (मानक क्रम के साथ) में समान क्रम प्रकार नहीं होता है, क्योंकि यद्यपि ही समुच्चय समान [[ प्रमुखता |आकार]] के होते हैं (वे दोनों [[गणनीय समुच्चय]] हैं), उनके बीच कोई क्रम-परिरक्षी मानचित्रण विशेषण नहीं है। इन दो क्रमित प्रारूपों में हम दो : धनात्मक पूर्णांकों में समुच्चय (जिसमें सबसे कम अवयव होता है), और ऋणात्मक पूर्णांकों का समुच्चय (जिसमें सबसे बड़ा अवयव होता है) और जोड़ सकते हैं। विवृत अंतराल {{math|(0, 1)}} परिमेय का क्रम परिमेय के समरूपी है (चूँकि, उदाहरण के लिए, <math>f(x) = \tfrac{2x - 1}{1 - \vert {2x - 1} \vert}</math> पूर्व से उत्तरार्द्ध तक दृढ़ता से बढ़ती द्विभाजन है); अर्ध-विवृत अंतराल [0,1) और (0,1] और विवृत अंतराल [0,1] में निहित परिमेय, तीन अतिरिक्त क्रमित प्रारूप के उदाहरण हैं। | ||
चूँकि क्रम-समतुल्यता | चूँकि क्रम-समतुल्यता [[समतुल्य संबंध]] है, यह सभी क्रमबद्ध सम्मुचयो के [[वर्ग (सेट सिद्धांत)]] को समतुल्य वर्गों में विभाजित करता है। | ||
==अच्छी तरह से ऑर्डर का प्रकार== | ==अच्छी तरह से ऑर्डर का प्रकार== |
Revision as of 13:42, 6 July 2023
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (February 2023) (Learn how and when to remove this template message) |
गणित में, विशेषकर समुच्चय सिद्धांत में, दो क्रमित समुच्चय X और Y को समान क्रमित प्रारूप कहा जाता है, यदि वे क्रम समरूप हैं, अर्थात, यदि कोई आक्षेप उपस्थित है (प्रत्येक अवयव दूसरे सम्मुचय में यथार्थतः एक के साथ जुड़ता है) ऐसे कि दोनों f और इसका व्युत्क्रम तथा एकदिस्ट (अवयवों के क्रम को संरक्षित करना) होता हैं। विशेष स्थिति में जब X पूरी तरह से व्यवस्थित है, की एकदिस्टता f इसके व्युत्क्रम की एकदिस्टता का तात्पर्य है।
उदाहरण के लिए, पूर्णांक के समुच्चय (गणित) और सम (गणित) पूर्णांकों के समुच्चय का क्रम प्रकार समान होता है, क्योंकि माप आक्षेप है जो क्रम को सुरक्षित रखता है। लेकिन पूर्णांकों के समुच्चय और परिमेय संख्याओं के समुच्चय (मानक क्रम के साथ) में समान क्रम प्रकार नहीं होता है, क्योंकि यद्यपि ही समुच्चय समान आकार के होते हैं (वे दोनों गणनीय समुच्चय हैं), उनके बीच कोई क्रम-परिरक्षी मानचित्रण विशेषण नहीं है। इन दो क्रमित प्रारूपों में हम दो : धनात्मक पूर्णांकों में समुच्चय (जिसमें सबसे कम अवयव होता है), और ऋणात्मक पूर्णांकों का समुच्चय (जिसमें सबसे बड़ा अवयव होता है) और जोड़ सकते हैं। विवृत अंतराल (0, 1) परिमेय का क्रम परिमेय के समरूपी है (चूँकि, उदाहरण के लिए, पूर्व से उत्तरार्द्ध तक दृढ़ता से बढ़ती द्विभाजन है); अर्ध-विवृत अंतराल [0,1) और (0,1] और विवृत अंतराल [0,1] में निहित परिमेय, तीन अतिरिक्त क्रमित प्रारूप के उदाहरण हैं।
चूँकि क्रम-समतुल्यता समतुल्य संबंध है, यह सभी क्रमबद्ध सम्मुचयो के वर्ग (सेट सिद्धांत) को समतुल्य वर्गों में विभाजित करता है।
अच्छी तरह से ऑर्डर का प्रकार
परिभाषा के अनुसार प्रत्येक सुव्यवस्थित सेट ठीक एक क्रमसूचक संख्या (गणित) के बराबर होता है। क्रमसूचक संख्याओं को उनकी कक्षाओं का विहित रूप माना जाता है, और इसलिए एक सुव्यवस्थित सेट के क्रम प्रकार को आमतौर पर संबंधित क्रमसूचक के साथ पहचाना जाता है। उदाहरण के लिए, प्राकृत संख्याओं के समुच्चय का क्रम प्रकार है ω.
सुव्यवस्थित सेट का ऑर्डर प्रकार V को कभी-कभी इस रूप में व्यक्त किया जाता है ord(V).[1] उदाहरण के लिए, सेट पर विचार करें V सम क्रमादेशों से भी कम ω ⋅ 2 + 7:
इसका ऑर्डर प्रकार है:
क्योंकि गिनती की 2 अलग-अलग सूचियाँ हैं और अंत में क्रम से 4 हैं।
परिमेय संख्या
किसी भी गणनीय पूर्णतः क्रमबद्ध सेट को क्रम-संरक्षण तरीके से परिमेय संख्याओं में इंजेक्टिव रूप से मैप किया जा सकता है। किसी भी घने क्रम को गिनने योग्य पूरी तरह से आदेशित सेट जिसमें कोई उच्चतम और कोई निम्नतम तत्व नहीं है, उसे क्रम-संरक्षण तरीके से तर्कसंगत संख्याओं पर विशेष रूप से मैप किया जा सकता है।
संकेतन
पूर्णांक संख्या और परिमेय संख्या का क्रम प्रकार आमतौर पर दर्शाया जाता है और , क्रमशः. यदि एक सेट ऑर्डर प्रकार है , के द्वैत (आदेश सिद्धांत) का क्रम प्रकार (उलटा क्रम) दर्शाया गया है .
यह भी देखें
- सुव्यवस्थित
बाहरी संबंध
संदर्भ
- ↑ "Ordinal Numbers and Their Arithmetic". Archived from the original on 2009-10-27. Retrieved 2007-06-13.