बहुचरण प्रवर्धक: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
== संयोजन योजनाएं == | == संयोजन योजनाएं == | ||
सबसे सरल, और सबसे सामान्य संयोजन योजना एक कैस्केड एम्पलीफायर बनाने वाले समान, या समान चरणों का एक कैस्केड संयोजन है।<ref>[https://web.archive.org/web/20080413051502/http://www.innovatia.com/Design_Center/Amplifier_Circuits.htm Innovatia: amplifier circuits]</ref> कैस्केड संयोजन में, एक चरण का उत्पादन पोर्ट (सर्किट सिद्धांत) अगले चरण के निविष्ट पोर्ट से जुड़ा होता है। सामान्यतः, | सबसे सरल, और सबसे सामान्य संयोजन योजना एक कैस्केड एम्पलीफायर बनाने वाले समान, या समान चरणों का एक कैस्केड संयोजन है।<ref>[https://web.archive.org/web/20080413051502/http://www.innovatia.com/Design_Center/Amplifier_Circuits.htm Innovatia: amplifier circuits]</ref> कैस्केड संयोजन में, एक चरण का उत्पादन पोर्ट (सर्किट सिद्धांत) अगले चरण के निविष्ट पोर्ट से जुड़ा होता है। सामान्यतः, विशिष्ट चरण एक [[सामान्य स्रोत|सामान्य]] उत्सर्जक विन्यास में द्विध्रुवी जंक्शन ट्रांजिस्टर(बीजेटी) या सामान्य स्रोत विन्यास में क्षेत्र-प्रभाव ट्रांजिस्टर (FETs) होते हैं। ऐसे कुछ आवेदन हैं जहां [[सामान्य आधार]] विन्यास को प्राथमिकता दी जाती है। सामान्य आधार में उच्च वोल्टेज लाभ होता है लेकिन कोई धारा लाभ नहीं होता है। इसका उपयोग [[यूएचएफ]] टेलीविजन और रेडियो रिसीवर में किया जाता है क्योंकि इसका कम निविष्ट प्रतिरोध [[सामान्य उत्सर्जक]] की तुलना में एंटेना से मेल खाना आसान होता है। ऐसे एम्पलीफायरों में जिनमें एक [[अंतर इनपुट|अंतर निविष्ट]] होता है और एक अंतर संकेत को उत्पादन करने के लिए आवश्यक होता है, चरणों को अंतर एम्पलीफायरों जैसे लंबी-अनुगामी वाले जोड़े होना चाहिए। [[ अंतर संकेतन |अंतर संकेतन]] से निपटने के लिए इन चरणों में दो ट्रांजिस्टर होते हैं। | ||
एक एम्पलीफायर बनाने के लिए अलग-अलग विन्यास वाले विभिन्न चरणों के साथ अधिक जटिल योजनाओं का उपयोग किया जा सकता है, जिनकी विशेषताएँ कई अलग-अलग मापदंडों, जैसे लाभ, निविष्ट प्रतिरोध और उत्पादन प्रतिरोध के लिए एकल-चरण से अधिक होती हैं।<ref>{{Cite book|last=Jaeger|first=Richard C.|url=https://www.worldcat.org/oclc/893721562|title=माइक्रोइलेक्ट्रॉनिक सर्किट डिजाइन|date=2015|others=Travis N. Blalock|isbn=978-0-07-352960-8|edition=Fifth|location=New York, NY|oclc=893721562}}</ref> [[बफर एम्पलीफायर]] के रूप में कार्य करने के लिए अंतिम चरण एक [[सामान्य कलेक्टर]] विन्यास हो सकता है। सामान्य कलेक्टर चरणों में कोई वोल्टेज लाभ नहीं होता है लेकिन उच्च वर्तमान लाभ और कम उत्पादन प्रतिरोध होता है। [[विद्युत भार]] इस प्रकार एम्पलीफायर प्रदर्शन को प्रभावित किए बिना उच्च धारा खींच सकता है। एक [[ cascode ]] संयोजन (कॉमन एमिटर स्टेज के बाद कॉमन बेस स्टेज) कभी-कभी पाया जाता है। [[ऑडियो पावर एम्पलीफायर]]ों में सामान्यतः पर अंतिम चरण के रूप में एक [[पुश-पुल आउटपुट|पुश-पुल उत्पादन]] होगा। | एक एम्पलीफायर बनाने के लिए अलग-अलग विन्यास वाले विभिन्न चरणों के साथ अधिक जटिल योजनाओं का उपयोग किया जा सकता है, जिनकी विशेषताएँ कई अलग-अलग मापदंडों, जैसे लाभ, निविष्ट प्रतिरोध और उत्पादन प्रतिरोध के लिए एकल-चरण से अधिक होती हैं।<ref>{{Cite book|last=Jaeger|first=Richard C.|url=https://www.worldcat.org/oclc/893721562|title=माइक्रोइलेक्ट्रॉनिक सर्किट डिजाइन|date=2015|others=Travis N. Blalock|isbn=978-0-07-352960-8|edition=Fifth|location=New York, NY|oclc=893721562}}</ref> [[बफर एम्पलीफायर]] के रूप में कार्य करने के लिए अंतिम चरण एक [[सामान्य कलेक्टर]] विन्यास हो सकता है। सामान्य कलेक्टर चरणों में कोई वोल्टेज लाभ नहीं होता है लेकिन उच्च वर्तमान लाभ और कम उत्पादन प्रतिरोध होता है। [[विद्युत भार]] इस प्रकार एम्पलीफायर प्रदर्शन को प्रभावित किए बिना उच्च धारा खींच सकता है। एक [[ cascode ]] संयोजन (कॉमन एमिटर स्टेज के बाद कॉमन बेस स्टेज) कभी-कभी पाया जाता है। [[ऑडियो पावर एम्पलीफायर]]ों में सामान्यतः पर अंतिम चरण के रूप में एक [[पुश-पुल आउटपुट|पुश-पुल उत्पादन]] होगा। | ||
Line 13: | Line 13: | ||
एम्पलीफायर पर समग्र नकारात्मक प्रतिक्रिया लागू की जा सकती है। यह वोल्टेज लाभ को कम करता है लेकिन इसके कई वांछनीय प्रभाव होते हैं; निविष्ट प्रतिरोध बढ़ाया जाता है, उत्पादन प्रतिरोध घटाया जाता है, और [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंडविड्थ (संकेत प्रोसेसिंग)]] बढ़ाया जाता है। | एम्पलीफायर पर समग्र नकारात्मक प्रतिक्रिया लागू की जा सकती है। यह वोल्टेज लाभ को कम करता है लेकिन इसके कई वांछनीय प्रभाव होते हैं; निविष्ट प्रतिरोध बढ़ाया जाता है, उत्पादन प्रतिरोध घटाया जाता है, और [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बैंडविड्थ (संकेत प्रोसेसिंग)]] बढ़ाया जाता है। | ||
== | == समग्र लाभ == | ||
कैस्केड चरणों के लाभ की गणना करने में जटिलता | कैस्केड चरणों के लाभ की गणना करने में जटिलता भारित करने के कारण चरणों के बीच अतिरिक्त-आदर्श युग्मन है। दो कैस्केड सामान्य उत्सर्जक चरण दिखाए गए हैं। क्योंकि दूसरे चरण का निविष्ट प्रतिरोध पहले चरण के उत्पादन प्रतिरोध के साथ एक [[ वोल्टेज विभक्त |वोल्टेज विभक्त]] बनाता है, समग्र लाभ विशिष्ट (पृथक) चरणों का उत्पाद नहीं है। | ||
मल्टीस्टेज एम्पलीफायर का समग्र लाभ | मल्टीस्टेज एम्पलीफायर का समग्र लाभ विशिष्ट चरणों के लाभ का उत्पाद है (संभावित [[Index.php?title=भारित प्रभाव|भारित प्रभाव]] को अनदेखा कर रहा है): | ||
: लाभ ( | : लाभ (A) = A<sub>1</sub>* A<sub>2</sub>*A<sub>3</sub> *A<sub>4</sub> *... *A<sub>n</sub>. . | ||
वैकल्पिक रूप से, यदि प्रत्येक एम्पलीफायर चरण का लाभ डेसिबल (डीबी) में व्यक्त किया जाता है, तो समग्र लाभ विशिष्ट चरणों के लाभ का योग होता है: | |||
: डीबी में लाभ(A) = A<sub>1</sub> + A<sub>2</sub> + A<sub>3</sub> + A<sub>4</sub> + ... A<sub>n</sub> | |||
== इंटर-स्टेज कपलिंग == | == इंटर-स्टेज कपलिंग == | ||
एम्पलीफायर चरणों को एक साथ जोड़ने की विधि के लिए कई विकल्प हैं। प्रत्यक्ष-युग्मित एम्पलीफायर में, जैसा कि नाम से पता चलता है, चरणों को एक चरण के उत्पादन और अगले चरण के निविष्ट के बीच सरल कंडक्टर से जोड़ा जाता है। यह आवश्यक है जहां डीसी पर काम करने के लिए एम्पलीफायर की आवश्यकता होती है, जैसे [[इंस्ट्रूमेंटेशन एम्पलीफायर]]ों में, लेकिन कई कमियां हैं। सीधा संयोजन आसन्न चरणों के [[ बयाझिंग ]] सर्किट को एक दूसरे के साथ बातचीत करने का कारण बनता है। यह डिजाइन को जटिल बनाता है और अन्य एम्पलीफायर मापदंडों पर समझौता करता है। डीसी एम्पलीफायर भी [[बहाव (दूरसंचार)]] के अधीन हैं, जिन्हें सावधानीपूर्वक समायोजन और उच्च स्थिरता वाले घटकों की आवश्यकता होती है। | एम्पलीफायर चरणों को एक साथ जोड़ने की विधि के लिए कई विकल्प हैं। प्रत्यक्ष-युग्मित एम्पलीफायर में, जैसा कि नाम से पता चलता है, चरणों को एक चरण के उत्पादन और अगले चरण के निविष्ट के बीच सरल कंडक्टर से जोड़ा जाता है। यह आवश्यक है जहां डीसी पर काम करने के लिए एम्पलीफायर की आवश्यकता होती है, जैसे [[इंस्ट्रूमेंटेशन एम्पलीफायर]]ों में, लेकिन कई कमियां हैं। सीधा संयोजन आसन्न चरणों के [[ बयाझिंग ]] सर्किट को एक दूसरे के साथ बातचीत करने का कारण बनता है। यह डिजाइन को जटिल बनाता है और अन्य एम्पलीफायर मापदंडों पर समझौता करता है। डीसी एम्पलीफायर भी [[बहाव (दूरसंचार)]] के अधीन हैं, जिन्हें सावधानीपूर्वक समायोजन और उच्च स्थिरता वाले घटकों की आवश्यकता होती है। |
Revision as of 14:56, 3 July 2023
This article needs additional citations for verification. (January 2021) (Learn how and when to remove this template message) |
मल्टीस्टेज एम्पलीफायर एक इलेक्ट्रॉनिक एम्पलीफायर है जिसमें दो या दो से अधिक सिंगल-स्टेज एम्पलीफायर एक साथ जुड़े होते हैं। इस संदर्भ में, एकल चरण एक एम्पलीफायर है जिसमें केवल एक ट्रांजिस्टर (कभी-कभी ट्रांजिस्टर की एक जोड़ी) या अन्य सक्रिय उपकरण होते हैं। एकाधिक चरणों का उपयोग करने का सबसे सामान्य कारण उन अनुप्रयोगों में एम्पलीफायर के लाभ को बढ़ाना है जहां निविष्ट संकेत बहुत छोटा है, उदाहरण के लिए रेडियो रिसीवर में। इन अनुप्रयोगों में एक ही चरण में अपने आप में अपर्याप्त लाभ होता है। कुछ बनावट में निविष्ट प्रतिरोध और उत्पादन प्रतिरोध जैसे अन्य मापदंडों के अधिक वांछनीय मान प्राप्त करना संभव है।
संयोजन योजनाएं
सबसे सरल, और सबसे सामान्य संयोजन योजना एक कैस्केड एम्पलीफायर बनाने वाले समान, या समान चरणों का एक कैस्केड संयोजन है।[1] कैस्केड संयोजन में, एक चरण का उत्पादन पोर्ट (सर्किट सिद्धांत) अगले चरण के निविष्ट पोर्ट से जुड़ा होता है। सामान्यतः, विशिष्ट चरण एक सामान्य उत्सर्जक विन्यास में द्विध्रुवी जंक्शन ट्रांजिस्टर(बीजेटी) या सामान्य स्रोत विन्यास में क्षेत्र-प्रभाव ट्रांजिस्टर (FETs) होते हैं। ऐसे कुछ आवेदन हैं जहां सामान्य आधार विन्यास को प्राथमिकता दी जाती है। सामान्य आधार में उच्च वोल्टेज लाभ होता है लेकिन कोई धारा लाभ नहीं होता है। इसका उपयोग यूएचएफ टेलीविजन और रेडियो रिसीवर में किया जाता है क्योंकि इसका कम निविष्ट प्रतिरोध सामान्य उत्सर्जक की तुलना में एंटेना से मेल खाना आसान होता है। ऐसे एम्पलीफायरों में जिनमें एक अंतर निविष्ट होता है और एक अंतर संकेत को उत्पादन करने के लिए आवश्यक होता है, चरणों को अंतर एम्पलीफायरों जैसे लंबी-अनुगामी वाले जोड़े होना चाहिए। अंतर संकेतन से निपटने के लिए इन चरणों में दो ट्रांजिस्टर होते हैं।
एक एम्पलीफायर बनाने के लिए अलग-अलग विन्यास वाले विभिन्न चरणों के साथ अधिक जटिल योजनाओं का उपयोग किया जा सकता है, जिनकी विशेषताएँ कई अलग-अलग मापदंडों, जैसे लाभ, निविष्ट प्रतिरोध और उत्पादन प्रतिरोध के लिए एकल-चरण से अधिक होती हैं।[2] बफर एम्पलीफायर के रूप में कार्य करने के लिए अंतिम चरण एक सामान्य कलेक्टर विन्यास हो सकता है। सामान्य कलेक्टर चरणों में कोई वोल्टेज लाभ नहीं होता है लेकिन उच्च वर्तमान लाभ और कम उत्पादन प्रतिरोध होता है। विद्युत भार इस प्रकार एम्पलीफायर प्रदर्शन को प्रभावित किए बिना उच्च धारा खींच सकता है। एक cascode संयोजन (कॉमन एमिटर स्टेज के बाद कॉमन बेस स्टेज) कभी-कभी पाया जाता है। ऑडियो पावर एम्पलीफायरों में सामान्यतः पर अंतिम चरण के रूप में एक पुश-पुल उत्पादन होगा।
एक डार्लिंगटन जोड़ी ट्रांजिस्टर एक उच्च वर्तमान लाभ प्राप्त करने का एक और तरीका है। इस संबंध में पहले ट्रांजिस्टर का उत्सर्जक दूसरे के आधार को दोनों संग्राहकों के साथ खिलाता है। सामान्य संग्राहक चरण के विपरीत, डार्लिंगटन जोड़ी में वोल्टेज लाभ के साथ-साथ वर्तमान लाभ भी हो सकता है। एक डार्लिंगटन जोड़ी को सामान्यतः पर दो अलग-अलग चरणों के बजाय एकल चरण के रूप में माना जाता है। यह उसी तरह से जुड़ा हुआ है जैसे एक सिंगल ट्रांजिस्टर होगा, और अक्सर इसे एक डिवाइस के रूप में पैक किया जाता है।
एम्पलीफायर पर समग्र नकारात्मक प्रतिक्रिया लागू की जा सकती है। यह वोल्टेज लाभ को कम करता है लेकिन इसके कई वांछनीय प्रभाव होते हैं; निविष्ट प्रतिरोध बढ़ाया जाता है, उत्पादन प्रतिरोध घटाया जाता है, और बैंडविड्थ (संकेत प्रोसेसिंग) बढ़ाया जाता है।
समग्र लाभ
कैस्केड चरणों के लाभ की गणना करने में जटिलता भारित करने के कारण चरणों के बीच अतिरिक्त-आदर्श युग्मन है। दो कैस्केड सामान्य उत्सर्जक चरण दिखाए गए हैं। क्योंकि दूसरे चरण का निविष्ट प्रतिरोध पहले चरण के उत्पादन प्रतिरोध के साथ एक वोल्टेज विभक्त बनाता है, समग्र लाभ विशिष्ट (पृथक) चरणों का उत्पाद नहीं है।
मल्टीस्टेज एम्पलीफायर का समग्र लाभ विशिष्ट चरणों के लाभ का उत्पाद है (संभावित भारित प्रभाव को अनदेखा कर रहा है):
- लाभ (A) = A1* A2*A3 *A4 *... *An. .
वैकल्पिक रूप से, यदि प्रत्येक एम्पलीफायर चरण का लाभ डेसिबल (डीबी) में व्यक्त किया जाता है, तो समग्र लाभ विशिष्ट चरणों के लाभ का योग होता है:
- डीबी में लाभ(A) = A1 + A2 + A3 + A4 + ... An
इंटर-स्टेज कपलिंग
एम्पलीफायर चरणों को एक साथ जोड़ने की विधि के लिए कई विकल्प हैं। प्रत्यक्ष-युग्मित एम्पलीफायर में, जैसा कि नाम से पता चलता है, चरणों को एक चरण के उत्पादन और अगले चरण के निविष्ट के बीच सरल कंडक्टर से जोड़ा जाता है। यह आवश्यक है जहां डीसी पर काम करने के लिए एम्पलीफायर की आवश्यकता होती है, जैसे इंस्ट्रूमेंटेशन एम्पलीफायरों में, लेकिन कई कमियां हैं। सीधा संयोजन आसन्न चरणों के बयाझिंग सर्किट को एक दूसरे के साथ बातचीत करने का कारण बनता है। यह डिजाइन को जटिल बनाता है और अन्य एम्पलीफायर मापदंडों पर समझौता करता है। डीसी एम्पलीफायर भी बहाव (दूरसंचार) के अधीन हैं, जिन्हें सावधानीपूर्वक समायोजन और उच्च स्थिरता वाले घटकों की आवश्यकता होती है।
जहां डीसी प्रवर्धन की आवश्यकता नहीं है, एक सामान्य विकल्प आरसी कपलिंग है। इस योजना में चरण उत्पादन और निविष्ट के बीच श्रृंखला में एक संधारित्र जुड़ा हुआ है। चूंकि कैपेसिटर डीसी पास नहीं करेगा इसलिए स्टेज बायसेस इंटरैक्ट नहीं कर सकता है। कोई निविष्ट न होने पर एम्पलीफायर का उत्पादन शून्य से बहाव नहीं होगा। कैपेसिटर की समाई (सी) और चरणों के निविष्ट और उत्पादन प्रतिरोध एक आरसी सर्किट बनाते हैं। यह क्रूड उच्च पास फिल्टर के रूप में कार्य करता है। कैपेसिटर वैल्यू को इतना बड़ा बनाया जाना चाहिए कि यह फिल्टर ब्याज की सबसे कम आवृत्ति से गुजरे। ऑडियो एम्पलीफायरों के लिए, यह मान अपेक्षाकृत बड़ा हो सकता है, लेकिन आकाशवाणी आवृति पर यह समग्र एम्पलीफायर की तुलना में नगण्य लागत का एक छोटा घटक है।
ट्रांसफार्मर कपलिंग एक वैकल्पिक एसी कपलिंग है। आरसी कपलिंग की तरह, यह डीसी को चरणों के बीच अलग करता है। हालांकि, ट्रांसफॉर्मर अधिक भारी होते हैं और कैपेसिटर की तुलना में बहुत अधिक महंगे होते हैं, इसलिए इसका उपयोग कम बार किया जाता है। ट्यून किए गए एम्पलीफायरों में ट्रांसफार्मर युग्मन अपने आप में आता है। ट्रांसफॉर्मर वाइंडिंग का इंडक्शन एक एलसी सर्किट के प्रारंभ करनेवाला के रूप में कार्य करता है। यदि ट्रांसफॉर्मर के दोनों किनारों को ट्यून किया जाता है तो इसे डबल-ट्यून एम्पलीफायर कहा जाता है। कंपित ट्यूनिंग वह है जहां गेन (इलेक्ट्रॉनिक्स) की कीमत पर बैंडविड्थ (संकेत प्रोसेसिंग) में सुधार के लिए प्रत्येक चरण को एक अलग आवृत्ति पर ट्यून किया जाता है।
चरणों के बीच ऑप्टो आइसोलेटर ्स का उपयोग करके ऑप्टिकल युग्मन प्राप्त किया जाता है। इन्हें चरणों के बीच पूर्ण विद्युत अलगाव प्रदान करने का लाभ है, इसलिए डीसी अलगाव प्रदान करता है और चरणों के बीच बातचीत से बचा जाता है। विद्युत सुरक्षा कारणों से कभी-कभी ऑप्टिकल अलगाव किया जाता है। इसका उपयोग balun संक्रमण प्रदान करने के लिए भी किया जा सकता है।
संदर्भ
- ↑ Innovatia: amplifier circuits
- ↑ Jaeger, Richard C. (2015). माइक्रोइलेक्ट्रॉनिक सर्किट डिजाइन. Travis N. Blalock (Fifth ed.). New York, NY. ISBN 978-0-07-352960-8. OCLC 893721562.
{{cite book}}
: CS1 maint: location missing publisher (link)