एबेलियन विस्तार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:
साइक्लोटोमिक विस्तार शब्द की दो अलग-अलग परिभाषाएँ हैं। इसका अर्थ या तो किसी क्षेत्र से जुड़ी एकता की मूलों से बना विस्तार हो सकता है, या ऐसे विस्तार का उपविस्तार हो सकता है। [[साइक्लोटोमिक क्षेत्र|'''साइक्लोटोमिक क्षेत्र''']] इसके उदाहरण हैं। किसी भी परिभाषा के अनुसार साइक्लोटोमिक विस्तार, सदैव एबेलियन होता है।
साइक्लोटोमिक विस्तार शब्द की दो अलग-अलग परिभाषाएँ हैं। इसका अर्थ या तो किसी क्षेत्र से जुड़ी एकता की मूलों से बना विस्तार हो सकता है, या ऐसे विस्तार का उपविस्तार हो सकता है। [[साइक्लोटोमिक क्षेत्र|'''साइक्लोटोमिक क्षेत्र''']] इसके उदाहरण हैं। किसी भी परिभाषा के अनुसार साइक्लोटोमिक विस्तार, सदैव एबेलियन होता है।


यदि किसी फ़ील्ड ''K'' में एकता का एक अभाज्य ''n''-वाँ मूल सम्मिलित है और ''K'' के तत्व का ''n''-वाँ मूल जुड़ा हुआ है, तो परिणामी [[वियोज्य विस्तार|कुमेर विस्तार]] एक एबेलियन विस्तार (यदि ''K'' की विशेषता ''p'' है तो हमें कहना चाहिए कि ''p'' ''n'' को विभाजित नहीं करता है, अन्यथा यह अलग करने योग्य विस्तार होने में भी विफल हो सकता है) है। सामान्यतः, चूंकि, तत्वों की ''n''-वीं मूलों के गैलोइस समूह ''n''-वें मूलों और एकता की मूलों दोनों पर काम करते हैं, जो गैर-एबेलियन गैलोइस समूह को [[अर्ध-प्रत्यक्ष उत्पाद]] के रूप में देता है। कुमेर सिद्धांत एबेलियन विस्तार स्थिति का पूरा विवरण देता है, और क्रोनकर-वेबर प्रमेय हमें बताता है कि यदि ''K'' [[तर्कसंगत संख्या|तर्कसंगत संख्याओं]] का क्षेत्र है, तो [[कुमेर विस्तार]] एबेलियन है यदि और केवल यदि यह किसी क्षेत्र का उपक्षेत्र है एकता की जड़ से जुड़कर प्राप्त किया जाता है।
यदि किसी फ़ील्ड ''K'' में एकता का एक अभाज्य ''n''-वाँ मूल सम्मिलित है और ''K'' के तत्व का ''n''-वाँ मूल जुड़ा हुआ है, तो परिणामी [[वियोज्य विस्तार|कुमेर विस्तार]] एक एबेलियन विस्तार (यदि ''K'' की विशेषता ''p'' है तो हमें कहना चाहिए कि ''p'' ''n'' को विभाजित नहीं करता है, अन्यथा यह अलग करने योग्य विस्तार होने में भी विफल हो सकता है) है। सामान्यतः, चूंकि, तत्वों की ''n''-वीं मूलों के गैलोइस समूह ''n''-वें मूलों और एकता की मूलों दोनों पर काम करते हैं, जो गैर-एबेलियन गैलोइस समूह को [[अर्ध-प्रत्यक्ष उत्पाद]] के रूप में देता है। कुमेर सिद्धांत एबेलियन विस्तार स्थिति का पूरा विवरण देता है, और क्रोनकर-वेबर प्रमेय हमें बताता है कि यदि ''K'' [[तर्कसंगत संख्या|तर्कसंगत संख्याओं]] का क्षेत्र है, तो [[कुमेर विस्तार]] एबेलियन है यदि और केवल यदि यह किसी क्षेत्र का उपक्षेत्र है एकता की जड़ से जुड़कर प्राप्त किया जाता है।


[[टोपोलॉजी]] में [[मौलिक समूह]] के साथ एक महत्वपूर्ण सादृश्य है, जो किसी स्थान के सभी कवरिंग स्थानों को वर्गीकृत करता है: एबेलियन कवर को इसके [[ आबेलियनाइजेशन | एबेलियनाइजेशन]] द्वारा वर्गीकृत किया जाता है जो सीधे पहले होमोलॉजी समूह से संबंधित होता है।
[[टोपोलॉजी]] में [[मौलिक समूह]] के साथ एक महत्वपूर्ण सादृश्य है, जो किसी स्थान के सभी कवरिंग स्थानों को वर्गीकृत करता है: एबेलियन कवर को इसके [[ आबेलियनाइजेशन |एबेलियनाइजेशन]] द्वारा वर्गीकृत किया जाता है जो सीधे पहले होमोलॉजी समूह से संबंधित होता है।


{{Further|रिंग क्लास फ़ील्ड}}
{{Further|रिंग क्लास फ़ील्ड}}


==संदर्भ==
==संदर्भ==
<!--{{Refimprove|date=June 2008}}-->
*{{springer|id=C/c027560|first=L.V.|last= Kuz'min|title=cyclotomic extension}}
*{{springer|id=C/c027560|first=L.V.|last= Kuz'min|title=cyclotomic extension}}
*{{MathWorld |id=AbelianExtension |title=Abelian Extension}}
*{{MathWorld |id=AbelianExtension |title=Abelian Extension}}

Revision as of 08:51, 6 July 2023

अमूर्त बीजगणित में, एबेलियन विस्तार एक गैलोज़ विस्तार है जिसका गैलोज़ समूह एबेलियन समूह है। जब गैलोज़ समूह भी चक्रीय समूह होता है, तो विस्तार को चक्रीय विस्तार भी कहा जाता है। दूसरी दिशा में जाने पर, गैलोज़ विस्तार को व्याख्या करने योग्य कहा जाता है यदि इसका गैलोज़ समूह व्याख्या करने योग्य समूह है, अर्थात, यदि समूह को एबेलियन समूह के सामान्य समूह विस्तार की श्रृंखला में विघटित किया जा सकता है। किसी परिमित क्षेत्र का प्रत्येक परिमित विस्तार चक्रीय विस्तार है।

विवरण

वर्ग क्षेत्र सिद्धांत संख्या क्षेत्रों के एबेलियन विस्तार, परिमित क्षेत्रों पर बीजीय वक्रों की बीजगणितीय विविधता के कार्य क्षेत्र और स्थानीय क्षेत्रों के बारे में विस्तृत जानकारी प्रदान करता है।

साइक्लोटोमिक विस्तार शब्द की दो अलग-अलग परिभाषाएँ हैं। इसका अर्थ या तो किसी क्षेत्र से जुड़ी एकता की मूलों से बना विस्तार हो सकता है, या ऐसे विस्तार का उपविस्तार हो सकता है। साइक्लोटोमिक क्षेत्र इसके उदाहरण हैं। किसी भी परिभाषा के अनुसार साइक्लोटोमिक विस्तार, सदैव एबेलियन होता है।

यदि किसी फ़ील्ड K में एकता का एक अभाज्य n-वाँ मूल सम्मिलित है और K के तत्व का n-वाँ मूल जुड़ा हुआ है, तो परिणामी कुमेर विस्तार एक एबेलियन विस्तार (यदि K की विशेषता p है तो हमें कहना चाहिए कि p n को विभाजित नहीं करता है, अन्यथा यह अलग करने योग्य विस्तार होने में भी विफल हो सकता है) है। सामान्यतः, चूंकि, तत्वों की n-वीं मूलों के गैलोइस समूह n-वें मूलों और एकता की मूलों दोनों पर काम करते हैं, जो गैर-एबेलियन गैलोइस समूह को अर्ध-प्रत्यक्ष उत्पाद के रूप में देता है। कुमेर सिद्धांत एबेलियन विस्तार स्थिति का पूरा विवरण देता है, और क्रोनकर-वेबर प्रमेय हमें बताता है कि यदि K तर्कसंगत संख्याओं का क्षेत्र है, तो कुमेर विस्तार एबेलियन है यदि और केवल यदि यह किसी क्षेत्र का उपक्षेत्र है एकता की जड़ से जुड़कर प्राप्त किया जाता है।

टोपोलॉजी में मौलिक समूह के साथ एक महत्वपूर्ण सादृश्य है, जो किसी स्थान के सभी कवरिंग स्थानों को वर्गीकृत करता है: एबेलियन कवर को इसके एबेलियनाइजेशन द्वारा वर्गीकृत किया जाता है जो सीधे पहले होमोलॉजी समूह से संबंधित होता है।

संदर्भ

  • Kuz'min, L.V. (2001) [1994], "cyclotomic extension", Encyclopedia of Mathematics, EMS Press
  • Weisstein, Eric W. "Abelian Extension". MathWorld.