ऑर्डर एम्बेडिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 22: Line 22:
== गुण ==
== गुण ==
[[File:Mutual embedding of open and closed real unit interval svg.svg|thumb|300px|का पारस्परिक श्रेणी एम्बेडिंग <math>(0,1)</math> और <math>[0,1]</math>, का उपयोग करना <math>f(x) = (94x+3)/100</math> दोनों दिशाओं में.]]
[[File:Mutual embedding of open and closed real unit interval svg.svg|thumb|300px|का पारस्परिक श्रेणी एम्बेडिंग <math>(0,1)</math> और <math>[0,1]</math>, का उपयोग करना <math>f(x) = (94x+3)/100</math> दोनों दिशाओं में.]]
[[File:Lattice T(6).svg|thumb|सेट <math>S</math> 6 के भाजक का, आंशिक रूप से x द्वारा क्रमित, y को विभाजित करता है। एम्बेडिंग <math>id: \{ 1,2,3 \} \to S</math> कोरट्रैक्शन नहीं हो सकता.]]एक श्रेणी समरूपता को एक [[विशेषण]] श्रेणी एम्बेडिंग के रूप में वर्णित किया जा सकता है। परिणामस्वरूप, f एम्बेड करने वाला कोई भी श्रेणी किसी फलन S के डोमेन और उसकी [[छवि (गणित)]] f(S) के बीच एक समरूपता को प्रतिबंधित करता है, जो एम्बेडिंग शब्द को उचित ठहराता है।<ref name="dp02"/>दूसरी ओर, यह अच्छी तरह से हो सकता है कि दो (आवश्यक रूप से अनंत) पॉसेट श्रेणी-आइसोमोर्फिक हुए बिना एक-दूसरे में पारस्परिक रूप से श्रेणी-एम्बेडेबल हों।
[[File:Lattice T(6).svg|thumb|सेट <math>S</math> 6 के भाजक का, आंशिक रूप से x द्वारा क्रमित, y को विभाजित करता है। एम्बेडिंग <math>id: \{ 1,2,3 \} \to S</math> कोरट्रैक्शन नहीं हो सकता.]]एक श्रेणी समरूपता को एक [[विशेषण]] श्रेणी एम्बेडिंग के रूप में वर्णित किया जा सकता है। परिणामस्वरूप, ''f'' एम्बेड करने वाला कोई भी श्रेणी किसी फलन ''S'' के डोमेन और उसकी [[छवि (गणित)]] ''f(S)'' के बीच एक समरूपता को प्रतिबंधित करता है, जो एम्बेडिंग शब्द को उचित बताता है।<ref name="dp02"/> दूसरी ओर, यह अच्छी तरह से हो सकता है कि दो (आवश्यक रूप से अनंत) पॉसेट श्रेणी-आइसोमोर्फिक हुए बिना एक-दूसरे में पारस्परिक रूप से श्रेणी-एम्बेडेबल हों।


खुले अंतराल द्वारा एक उदाहरण प्रदान किया गया है <math>(0,1)</math> [[वास्तविक संख्या]]एँ और संगत [[बंद अंतराल]] <math>[0,1]</math>. कार्यक्रम <math>f(x) = (94x+3) / 100</math> पूर्व को उपसमुच्चय में मैप करता है <math>(0.03,0.97)</math> उत्तरार्द्ध का और उत्तरार्द्ध का उपसमुच्चय <math>[0.03,0.97]</math>पूर्व का, चित्र देखें। दोनों सेटों को प्राकृतिक तरीके से श्रेणी करना, <math>f</math> श्रेणी-संरक्षण और श्रेणी-प्रतिबिंबित दोनों है (क्योंकि यह एक रैखिक कार्य है<!---Can't avoid this [[WP:EASTEREGG]], since [[affine function]] talks only about geometry, while [[linear function]] talks about functions ℝ→ℝ and mentions "affine" as a name for "linear"'s wider notion.--->). फिर भी, दोनों पदों के बीच कोई समरूपता मौजूद नहीं हो सकती, उदाहरण के लिए <math>[0,1]</math> जबकि कम से कम तत्व है <math>(0,1)</math> नहीं करता।
[[वास्तविक संख्या|वास्तविक संख्याएँ]]  के खुले अंतराल <math>(0,1)</math> और संबंधित [[बंद अंतराल]] <math>[0,1]</math> द्वारा एक उदाहरण प्रदान किया जाता है। फ़ंक्शन <math>f(x) = (94x+3) / 100</math> पहले को दूसरे के उपसमुच्चय <math>(0.03,0.97)</math> में और बाद वाले को पहले के सबसेट <math>[0.03,0.97]</math> में मैप करता है, चित्र देखें। दोनों सेटों को प्राकृतिक तरीके से ऑर्डर करने पर, एफ ऑर्डर-संरक्षण और ऑर्डर-प्रतिबिंबित (क्योंकि यह एक एफ़िन फ़ंक्शन है) दोनों है।<!---Can't avoid this [[WP:EASTEREGG]], since [[affine function]] talks only about geometry, while [[linear function]] talks about functions ℝ→ℝ and mentions "affine" as a name for "linear"'s wider notion.---> फिर भी, दोनों पदों के बीच कोई समरूपता मौजूद नहीं हो सकती, उदाहरण के लिए <math>[0,1]</math> में न्यूनतम तत्व है जबकि <math>(0,1)</math> में नहीं है। एक अंतराल में वास्तविक संख्याओं को ऑर्डर-एम्बेड करने के लिए आर्कटान का उपयोग करने वाले समान उदाहरण के लिए, और विपरीत दिशा के लिए [[पहचान मानचित्र|पहचान माप]] देखें, उदाहरण के लिए जस्ट एंड वीज़ (1996) देखें।<ref>{{citation|title=Discovering Modern Set Theory: The basics|volume=8|series=Fields Institute Monographs|first1=Winfried|last1=Just|first2=Martin|last2=Weese|publisher=American Mathematical Society|year=1996|isbn=9780821872475|page=21|url=https://books.google.com/books?id=TPvHr7fcvHoC&pg=PA21}}</ref>
वास्तविक संख्याओं को एक अंतराल में क्रमबद्ध करने के लिए आर्कटान का उपयोग करने वाले एक समान उदाहरण के लिए, और विपरीत दिशा के लिए [[पहचान मानचित्र]] देखें, उदाहरण के लिए देखें। जस्ट एंड वीज़ (1996)<ref>{{citation|title=Discovering Modern Set Theory: The basics|volume=8|series=Fields Institute Monographs|first1=Winfried|last1=Just|first2=Martin|last2=Weese|publisher=American Mathematical Society|year=1996|isbn=9780821872475|page=21|url=https://books.google.com/books?id=TPvHr7fcvHoC&pg=PA21}}</ref>
 
एक वापसी एक जोड़ी है <math>(f,g)</math> क्रम-संरक्षित मानचित्रों की जिनकी [[कार्य संरचना]] <math>g \circ f</math> पहचान है. इस मामले में, <math>f</math> इसे कोरट्रैक्शन कहा जाता है, और यह एक श्रेणी एम्बेडिंग होना चाहिए।<ref>{{citation
रिट्रेक्ट ऑर्डर-संरक्षण मापों की एक जोड़ी <math>(f,g)</math> है जिसकी [[कार्य संरचना]] <math>g \circ f</math> पहचान है। इस स्थिति में, <math>f</math> को कोरट्रैक्शन कहा जाता है, और यह एक श्रेणी एम्बेडिंग होना चाहिए।<ref>{{citation
  | last1 = Duffus | first1 = Dwight
  | last1 = Duffus | first1 = Dwight
  | last2 = Laflamme | first2 = Claude
  | last2 = Laflamme | first2 = Claude
Line 39: Line 39:
  | volume = 59
  | volume = 59
  | year = 2008| s2cid = 14259820
  | year = 2008| s2cid = 14259820
  }}.</ref> हालाँकि, प्रत्येक श्रेणी एम्बेडिंग एक कोरट्रैक्शन नहीं है। एक तुच्छ उदाहरण के रूप में, अद्वितीय श्रेणी एम्बेडिंग <math>f: \emptyset \to \{1\}</math> खाली पोसेट से गैर-रिक्त पोसेट में कोई वापसी नहीं है, क्योंकि कोई श्रेणी-संरक्षण मानचित्र नहीं है <math>g: \{1\} \to \emptyset</math>. अधिक स्पष्ट रूप से, सेट पर विचार करें <math>S</math> 6 के [[भाजक]] का, आंशिक रूप से x द्वारा y को [[विभाजित]] करने पर क्रमबद्ध, चित्र देखें। एम्बेडेड उप-पोज़िट पर विचार करें <math>\{ 1,2,3 \}</math>. एम्बेडिंग की वापसी <math>id: \{ 1,2,3 \} \to S</math> भेजने की आवश्यकता होगी <math>6</math> कहीं अंदर <math>\{ 1,2,3 \}</math> दोनों के ऊपर <math>2</math> और <math>3</math>, लेकिन ऐसी कोई जगह नहीं है.
  }}.</ref> चूँकि, प्रत्येक श्रेणी एम्बेडिंग एक कोरट्रैक्शन नहीं है। एक तुच्छ उदाहरण के रूप में, खाली पोसेट से गैर-रिक्त पोसेट में <math>f: \emptyset \to \{1\}</math> को एम्बेड करने वाले अद्वितीय ऑर्डर में कोई वापसी नहीं है, क्योंकि कोई श्रेणी-संरक्षण माप <math>g: \{1\} \to \emptyset</math> नहीं है। अधिक स्पष्ट रूप से, सेट पर विचार करें 6 के [[भाजक|विभाजक]] के सेट <math>S</math> पर विचार करें, जो आंशिक रूप से x द्वारा y को [[विभाजित]] करके क्रमबद्ध हैं, चित्र देखें। एम्बेडेड उप-पोज़िट <math>\{ 1,2,3 \}</math> पर विचार करें। एम्बेडिंग <math>id: \{ 1,2,3 \} \to S</math> को वापस लेने के लिए <math>2</math> और <math>3</math> दोनों के ऊपर <math>\{ 1,2,3 \}</math> में कहीं <math>6</math> भेजने की आवश्यकता होगी, किन्तु ऐसा कोई स्थान नहीं है।


== अतिरिक्त परिप्रेक्ष्य ==
== अतिरिक्त परिप्रेक्ष्य ==

Revision as of 08:19, 7 July 2023

श्रेणी सिद्धांत में, गणित की एक शाखा, श्रेणी एम्बेडिंग एक विशेष प्रकार का मोनोटोन फलन है, जो एक आंशिक रूप से श्रेणी किए गए सेट को दूसरे में सम्मिलित करने का एक प्रणाली प्रदान करता है। गैलोइस कनेक्शन की तरह, श्रेणी एम्बेडिंग एक ऐसी धारणा का निर्माण करती है जो श्रेणी समरूपता की अवधारणा से सख्ती से कमजोर है। इन दोनों कमजोरियों को श्रेणी सिद्धांत के संदर्भ में समझा जा सकता है।

औपचारिक परिभाषा

औपचारिक रूप से, दो आंशिक रूप से श्रेणी किए गए सेट (पोसेट) और दिए गए हैं, एक फलन (गणित) एक श्रेणी एम्बेडिंग है यदि श्रेणी-संरक्षण और श्रेणी-प्रतिबिंबित दोनों है, अर्थात् में सभी और के लिए, एक है

[1]

ऐसा फलन आवश्यक रूप से इंजेक्टिव है, क्योंकि का तात्पर्य और है।[1] यदि दो पोजेट्स और के बीच एम्बेडिंग श्रेणी उपस्थित है, तो कोई कहता है कि को में एम्बेड किया जा सकता है।

गुण

का पारस्परिक श्रेणी एम्बेडिंग और , का उपयोग करना दोनों दिशाओं में.
सेट 6 के भाजक का, आंशिक रूप से x द्वारा क्रमित, y को विभाजित करता है। एम्बेडिंग कोरट्रैक्शन नहीं हो सकता.

एक श्रेणी समरूपता को एक विशेषण श्रेणी एम्बेडिंग के रूप में वर्णित किया जा सकता है। परिणामस्वरूप, f एम्बेड करने वाला कोई भी श्रेणी किसी फलन S के डोमेन और उसकी छवि (गणित) f(S) के बीच एक समरूपता को प्रतिबंधित करता है, जो एम्बेडिंग शब्द को उचित बताता है।[1] दूसरी ओर, यह अच्छी तरह से हो सकता है कि दो (आवश्यक रूप से अनंत) पॉसेट श्रेणी-आइसोमोर्फिक हुए बिना एक-दूसरे में पारस्परिक रूप से श्रेणी-एम्बेडेबल हों।

वास्तविक संख्याएँ के खुले अंतराल और संबंधित बंद अंतराल द्वारा एक उदाहरण प्रदान किया जाता है। फ़ंक्शन पहले को दूसरे के उपसमुच्चय में और बाद वाले को पहले के सबसेट में मैप करता है, चित्र देखें। दोनों सेटों को प्राकृतिक तरीके से ऑर्डर करने पर, एफ ऑर्डर-संरक्षण और ऑर्डर-प्रतिबिंबित (क्योंकि यह एक एफ़िन फ़ंक्शन है) दोनों है। फिर भी, दोनों पदों के बीच कोई समरूपता मौजूद नहीं हो सकती, उदाहरण के लिए में न्यूनतम तत्व है जबकि में नहीं है। एक अंतराल में वास्तविक संख्याओं को ऑर्डर-एम्बेड करने के लिए आर्कटान का उपयोग करने वाले समान उदाहरण के लिए, और विपरीत दिशा के लिए पहचान माप देखें, उदाहरण के लिए जस्ट एंड वीज़ (1996) देखें।[2]

रिट्रेक्ट ऑर्डर-संरक्षण मापों की एक जोड़ी है जिसकी कार्य संरचना पहचान है। इस स्थिति में, को कोरट्रैक्शन कहा जाता है, और यह एक श्रेणी एम्बेडिंग होना चाहिए।[3] चूँकि, प्रत्येक श्रेणी एम्बेडिंग एक कोरट्रैक्शन नहीं है। एक तुच्छ उदाहरण के रूप में, खाली पोसेट से गैर-रिक्त पोसेट में को एम्बेड करने वाले अद्वितीय ऑर्डर में कोई वापसी नहीं है, क्योंकि कोई श्रेणी-संरक्षण माप नहीं है। अधिक स्पष्ट रूप से, सेट पर विचार करें 6 के विभाजक के सेट पर विचार करें, जो आंशिक रूप से x द्वारा y को विभाजित करके क्रमबद्ध हैं, चित्र देखें। एम्बेडेड उप-पोज़िट पर विचार करें। एम्बेडिंग को वापस लेने के लिए और दोनों के ऊपर में कहीं भेजने की आवश्यकता होगी, किन्तु ऐसा कोई स्थान नहीं है।

अतिरिक्त परिप्रेक्ष्य

पोसेट्स को सीधे तौर पर कई दृष्टिकोणों से देखा जा सकता है, और श्रेणी एम्बेडिंग इतनी बुनियादी हैं कि वे हर जगह से दिखाई देते हैं। उदाहरण के लिए:

  • (मॉडल सिद्धांत) एक पोसेट एक सेट है जो (रिफ्लेक्सिव, एंटीसिमेट्रिक और ट्रांजिटिव) द्विआधारी संबंध से लैस है। ए → बी को एम्बेड करने वाला श्रेणी ए से बी की प्राथमिक उपसंरचना में एक समरूपता है।
  • (ग्राफ़ सिद्धांत) एक पोसेट एक (सकर्मक, चक्रीय, निर्देशित, प्रतिवर्ती) ग्राफ़ (असतत गणित) है। ए → बी को एम्बेड करने वाला एक श्रेणी ए से बी के एक प्रेरित सबग्राफ के लिए एक ग्राफ समरूपता है।
  • (श्रेणी सिद्धांत) एक पोसेट एक (छोटी, पतली और कंकाल) श्रेणी (गणित) है जैसे कि प्रत्येक होम-सेट में अधिकतम एक तत्व होता है। ए → बी को एम्बेड करने वाला एक श्रेणी ए से बी तक एक पूर्ण और वफादार ऑपरेटर है जो वस्तुओं पर इंजेक्शन है, या समकक्ष ए से बी की पूर्ण उपश्रेणी में एक आइसोमोर्फिज्म है।

यह भी देखें

  • दुशनिक-मिलर प्रमेय
  • लेवर का प्रमेय

संदर्भ

  1. 1.0 1.1 1.2 Davey, B. A.; Priestley, H. A. (2002), "Maps between ordered sets", Introduction to Lattices and Order (2nd ed.), New York: Cambridge University Press, pp. 23–24, ISBN 0-521-78451-4, MR 1902334.
  2. Just, Winfried; Weese, Martin (1996), Discovering Modern Set Theory: The basics, Fields Institute Monographs, vol. 8, American Mathematical Society, p. 21, ISBN 9780821872475
  3. Duffus, Dwight; Laflamme, Claude; Pouzet, Maurice (2008), "Retracts of posets: the chain-gap property and the selection property are independent", Algebra Universalis, 59 (1–2): 243–255, arXiv:math/0612458, doi:10.1007/s00012-008-2125-6, MR 2453498, S2CID 14259820.