घात श्रेणी: Difference between revisions
No edit summary |
No edit summary |
||
Line 13: | Line 13: | ||
===बहुपद=== | ===बहुपद=== | ||
[[Image:Exp series.gif|right|thumb|घातीय फ़ंक्शन (नीले रंग में), और इसकी मैकलॉरिन श्रृंखला (लाल रंग में) के पहले n + 1 शब्दों के योग से इसका सुधार सन्निकटन। तो<br> n=0 देता है <math>f(x) = 1</math>,<br> n=1 <math>f(x) = 1 + x</math>,<br> n=2 <math>f(x)= 1 + x + x^2/2</math>, <br> n=3 <math>f(x)= 1 + x + x^2/2 + x^3/6</math>वगैरह-वगैरह.]]किसी भी [[बहुपद]] को किसी भी केंद्र c के चारों ओर घात श्रृंखला के रूप में | [[Image:Exp series.gif|right|thumb|घातीय फ़ंक्शन (नीले रंग में), और इसकी मैकलॉरिन श्रृंखला (लाल रंग में) के पहले n + 1 शब्दों के योग से इसका सुधार सन्निकटन। तो<br> n=0 देता है <math>f(x) = 1</math>,<br> n=1 <math>f(x) = 1 + x</math>,<br> n=2 <math>f(x)= 1 + x + x^2/2</math>, <br> n=3 <math>f(x)= 1 + x + x^2/2 + x^3/6</math>वगैरह-वगैरह.]]किसी भी [[बहुपद]] को किसी भी केंद्र c के चारों ओर घात श्रृंखला के रूप में सरलता से व्यक्त किया जा सकता है, चूँकि सीमित रूप से कई गुणांकों को त्यागकर सभी शून्य होंगे क्योंकि परिभाषा के अनुसार घात श्रृंखला में अनंत रूप से कई पद होते हैं। उदाहरण के लिए, बहुपद <math display="inline">f(x) = x^2 + 2x + 3</math> को केंद्र के चारों ओर घात श्रृंखला के रूप में लिखा जा सकता है <math display="inline">c = 0</math> के रूप में लिखा जा सकता है: | ||
<math display="block">f(x) = 3 + 2 x + 1 x^2 + 0 x^3 + 0 x^4 + \cdots</math> | <math display="block">f(x) = 3 + 2 x + 1 x^2 + 0 x^3 + 0 x^4 + \cdots</math> | ||
या केंद्र के | या केंद्र के निकट <math display="inline">c = 1</math> के रूप में लिखा जा सकता है: | ||
<math display="block">f(x) = 6 + 4(x - 1) + 1(x - 1)^2 + 0(x - 1)^3 + 0(x - 1)^4 + \cdots </math> | <math display="block">f(x) = 6 + 4(x - 1) + 1(x - 1)^2 + 0(x - 1)^3 + 0(x - 1)^4 + \cdots </math> | ||
इसका कारण टेलर श्रृंखला के चारों ओर f(x) का विस्तार है <math display="inline">x = 1</math> है | इसका कारण टेलर श्रृंखला के चारों ओर f(x) का विस्तार है <math display="inline">x = 1</math> है: | ||
<math display="block">f(x) = f(1)+\frac {f'(1)}{1!} (x-1)+ \frac{f''(1)}{2!} (x-1)^2+\frac{f'''(1)}{3!}(x-1)^3+ \cdots, </math> | <math display="block">f(x) = f(1)+\frac {f'(1)}{1!} (x-1)+ \frac{f''(1)}{2!} (x-1)^2+\frac{f'''(1)}{3!}(x-1)^3+ \cdots, </math> | ||
जैसा <math display="inline">f(x=1) = 1 + 2 +3 = 6 </math> और गैर-शून्य व्युत्पन्न हैं <math display="inline">f'(x) = 2x + 2</math>, इसलिए <math display="inline">f'(1) = 4</math> और <math display="inline">f''(x) = 2</math>, | जैसा <math display="inline">f(x=1) = 1 + 2 +3 = 6 </math> और गैर-शून्य व्युत्पन्न हैं <math display="inline">f'(x) = 2x + 2</math>, इसलिए <math display="inline">f'(1) = 4</math> और <math display="inline">f''(x) = 2</math>, स्थिरांक हैं। | ||
या वास्तव में किसी अन्य केंद्र के | या वास्तव में किसी अन्य केंद्र के निकट विस्तार संभव है।<ref>{{cite book|author=Howard Levi|title=बहुपद, घात श्रृंखला, और कैलकुलस| url=https://books.google.com/books?id=AcI-AAAAIAAJ|year=1967|publisher=Van Nostrand|pages=24|author-link=Howard Levi}}</ref> कोई घात श्रृंखला को अनंत डिग्री के बहुपदों के रूप में देख सकता है, चूँकि घात श्रृंखला बहुपद नहीं हैं। | ||
===ज्यामितीय श्रृंखला, घातांकीय फलन और ज्या=== | ===ज्यामितीय श्रृंखला, घातांकीय फलन और ज्या=== | ||
ज्यामितीय श्रृंखला सूत्र | ज्यामितीय श्रृंखला सूत्र; | ||
<math display="block">\frac{1}{1 - x} = \sum_{n=0}^\infty x^n = 1 + x + x^2 + x^3 + \cdots,</math> | <math display="block">\frac{1}{1 - x} = \sum_{n=0}^\infty x^n = 1 + x + x^2 + x^3 + \cdots,</math> | ||
जिसके लिए | जिसके लिए <math display="inline">|x| < 1</math> मान्य है, घात श्रृंखला के सबसे महत्वपूर्ण उदाहरणों में से है, जैसे कि घातीय फलन सूत्र हैं; | ||
<math display="block">e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,</math> | <math display="block">e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots,</math> | ||
और | और ज्या सूत्र | ||
<math display="block">\sin(x) = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n + 1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots,</math> | <math display="block">\sin(x) = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{(2n + 1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots,</math> | ||
सभी वास्तविक x के लिए | सभी वास्तविक x के लिए मान्य हैं। | ||
ये | ये घात श्रृंखला भी टेलर श्रृंखला के उदाहरण हैं। | ||
=== घातांक के समुच्चय पर === | === घातांक के समुच्चय पर === | ||
किसी | किसी घात शृंखला में नकारात्मक घातों की अनुमति नहीं है; उदाहरण के लिए, <math display="inline">1 + x^{-1} + x^{-2} + \cdots</math> इसे घात श्रृंखला नहीं माना जाता है (चूँकि यह [[लॉरेंट श्रृंखला]] है)। इसी प्रकार, भिन्नात्मक घात जैसे <math display="inline">x^\frac{1}{2}</math> की अनुमति नहीं है (किन्तु [[पुइसेक्स श्रृंखला]] देखें)। गुणांक <math display="inline"> a_n</math> पर निर्भर रहने की अनुमति नहीं है {{nowrap|<math display="inline">x</math>,}} इस प्रकार उदाहरण के लिए: | ||
<math display="block">\sin(x) x + \sin(2x) x^2 + \sin(3x) x^3 + \cdots </math> | <math display="block">\sin(x) x + \sin(2x) x^2 + \sin(3x) x^3 + \cdots </math> | ||
कोई | कोई घात शृंखला नहीं है। | ||
==अभिसरण की त्रिज्या== | ==अभिसरण की त्रिज्या== | ||
Line 121: | Line 121: | ||
# अभिसरण की डिस्क के बंद होने पर अभिसरण लेकिन निरंतर योग नहीं: वाकलॉ सिएरपिंस्की|सिएरपिंस्की ने उदाहरण दिया<ref>{{cite journal|author=Wacław Sierpiński|title=Sur une série potentielle qui, étant convergente en tout point de son cercle de convergence, représente sur ce cercle une fonction discontinue. (French)|journal=Rendiconti del Circolo Matematico di Palermo| url=https://zbmath.org/?q=an:46.1466.03|year=1916|volume=41|publisher=Palermo Rend.|pages=187–190 | doi=10.1007/BF03018294 |jfm=46.1466.03 | s2cid=121218640| author-link=Wacław Sierpiński}}</ref> अभिसरण की त्रिज्या के साथ घातश्रृंखला की <math>1</math>, सभी बिंदुओं पर अभिसरण <math>|z|=1</math>, लेकिन योग असीमित कार्य है और, विशेष रूप से, असंतत है। सीमा बिंदु पर तरफा निरंतरता के लिए पर्याप्त शर्त हाबिल के प्रमेय द्वारा दी गई है। | # अभिसरण की डिस्क के बंद होने पर अभिसरण लेकिन निरंतर योग नहीं: वाकलॉ सिएरपिंस्की|सिएरपिंस्की ने उदाहरण दिया<ref>{{cite journal|author=Wacław Sierpiński|title=Sur une série potentielle qui, étant convergente en tout point de son cercle de convergence, représente sur ce cercle une fonction discontinue. (French)|journal=Rendiconti del Circolo Matematico di Palermo| url=https://zbmath.org/?q=an:46.1466.03|year=1916|volume=41|publisher=Palermo Rend.|pages=187–190 | doi=10.1007/BF03018294 |jfm=46.1466.03 | s2cid=121218640| author-link=Wacław Sierpiński}}</ref> अभिसरण की त्रिज्या के साथ घातश्रृंखला की <math>1</math>, सभी बिंदुओं पर अभिसरण <math>|z|=1</math>, लेकिन योग असीमित कार्य है और, विशेष रूप से, असंतत है। सीमा बिंदु पर तरफा निरंतरता के लिए पर्याप्त शर्त हाबिल के प्रमेय द्वारा दी गई है। | ||
== औपचारिक | == औपचारिक घात श्रृंखला == | ||
{{main|औपचारिक | {{main|औपचारिक घात श्रृंखला}} | ||
[[अमूर्त बीजगणित]] में, व्यक्ति वास्तविक और जटिल संख्याओं के क्षेत्र | [[अमूर्त बीजगणित]] में, व्यक्ति वास्तविक और जटिल संख्याओं के क्षेत्र तक सीमित हुए बिना और अभिसरण के विषय में विचार किए बिना घात श्रृंखला के सार को पकड़ने का प्रयास करता है। यह औपचारिक घात श्रृंखला की अवधारणा की ओर ले जाता है, जो बीजगणितीय कॉम्बिनेटरिक्स में महान उपयोगिता की अवधारणा है। | ||
== कई चर में पावर श्रृंखला == | == कई चर में पावर श्रृंखला == | ||
Line 133: | Line 133: | ||
ऐसी श्रृंखला का सिद्धांत ल-चर श्रृंखला की तुलना में अधिक पेचीदा है, जिसमें अभिसरण के अधिक जटिल क्षेत्र हैं। उदाहरण के लिए, पावर श्रृंखला <math display="inline">\sum_{n=0}^\infty x_1^n x_2^n</math> सेट में बिल्कुल अभिसरण है <math>\{ (x_1, x_2): |x_1 x_2| < 1\}</math> दो अतिपरवलय के बीच. (यह लॉग-उत्तल सेट का उदाहरण है, इस अर्थ में कि बिंदुओं का सेट <math>(\log |x_1|, \log |x_2|)</math>, कहाँ <math>(x_1, x_2)</math> उपरोक्त क्षेत्र में स्थित, उत्तल समुच्चय है। अधिक सामान्यतः, कोई यह दिखा सकता है कि जब c=0, पूर्ण अभिसरण के क्षेत्र का आंतरिक भाग हमेशा इस अर्थ में लॉग-उत्तल सेट होता है।) दूसरी ओर, अभिसरण के इस क्षेत्र के आंतरिक भाग में कोई अंतर और ीकृत हो सकता है श्रृंखला चिह्न के अंतर्गत, ठीक वैसे ही जैसे कोई सामान्य घातश्रृंखला के साथ कर सकता है।<ref>{{cite journal |doi=10.1090/S0002-9904-1948-08994-7|title=उत्तल कार्य|year=1948|last1=Beckenbach|first1=E. F.|journal=Bulletin of the American Mathematical Society|volume=54|issue=5|pages=439–460|doi-access=free}}</ref> | ऐसी श्रृंखला का सिद्धांत ल-चर श्रृंखला की तुलना में अधिक पेचीदा है, जिसमें अभिसरण के अधिक जटिल क्षेत्र हैं। उदाहरण के लिए, पावर श्रृंखला <math display="inline">\sum_{n=0}^\infty x_1^n x_2^n</math> सेट में बिल्कुल अभिसरण है <math>\{ (x_1, x_2): |x_1 x_2| < 1\}</math> दो अतिपरवलय के बीच. (यह लॉग-उत्तल सेट का उदाहरण है, इस अर्थ में कि बिंदुओं का सेट <math>(\log |x_1|, \log |x_2|)</math>, कहाँ <math>(x_1, x_2)</math> उपरोक्त क्षेत्र में स्थित, उत्तल समुच्चय है। अधिक सामान्यतः, कोई यह दिखा सकता है कि जब c=0, पूर्ण अभिसरण के क्षेत्र का आंतरिक भाग हमेशा इस अर्थ में लॉग-उत्तल सेट होता है।) दूसरी ओर, अभिसरण के इस क्षेत्र के आंतरिक भाग में कोई अंतर और ीकृत हो सकता है श्रृंखला चिह्न के अंतर्गत, ठीक वैसे ही जैसे कोई सामान्य घातश्रृंखला के साथ कर सकता है।<ref>{{cite journal |doi=10.1090/S0002-9904-1948-08994-7|title=उत्तल कार्य|year=1948|last1=Beckenbach|first1=E. F.|journal=Bulletin of the American Mathematical Society|volume=54|issue=5|pages=439–460|doi-access=free}}</ref> | ||
== | == घात श्रृंखला का क्रम == | ||
मान लीजिए {{mvar|α}} घात श्रृंखला {{math|''f''(''x''<sub>1</sub>, ''x''<sub>2</sub>, …, ''x''<sub>''n''</sub>)}} के लिए बहु-सूचकांक है। घात श्रृंखला f के क्रम को न्यूनतम मान के रूप में परिभाषित किया गया है <math>r</math> इस प्रकार है कि ''a<sub>α</sub>'' ≠ 0 है। <math>r = |\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n</math>, या <math>\infty</math> यदि f ≡ 0 है। विशेष रूप से, एकल चर x में घात श्रृंखला f(x) के लिए, f का क्रम गैर-शून्य गुणांक के साथ x की सबसे छोटी घात है। यह परिभाषा सरलता से लॉरेंट श्रृंखला तक विस्तारित है। | |||
== टिप्पणियाँ == | == टिप्पणियाँ == |
Revision as of 10:04, 5 July 2023
गणित में, घात श्रृंखला (चर में) रूप की अनंत श्रृंखला होती है:
कई स्थितियों में, c (श्रृंखला का केंद्र) शून्य के समान होता है, उदाहरण के लिए मैकलॉरिन श्रृंखला पर विचार करते समय होता है। ऐसी स्थिति में, घात श्रृंखला सरल रूप लेती है:
उदाहरण
बहुपद
किसी भी बहुपद को किसी भी केंद्र c के चारों ओर घात श्रृंखला के रूप में सरलता से व्यक्त किया जा सकता है, चूँकि सीमित रूप से कई गुणांकों को त्यागकर सभी शून्य होंगे क्योंकि परिभाषा के अनुसार घात श्रृंखला में अनंत रूप से कई पद होते हैं। उदाहरण के लिए, बहुपद को केंद्र के चारों ओर घात श्रृंखला के रूप में लिखा जा सकता है के रूप में लिखा जा सकता है:
या वास्तव में किसी अन्य केंद्र के निकट विस्तार संभव है।[1] कोई घात श्रृंखला को अनंत डिग्री के बहुपदों के रूप में देख सकता है, चूँकि घात श्रृंखला बहुपद नहीं हैं।
ज्यामितीय श्रृंखला, घातांकीय फलन और ज्या
ज्यामितीय श्रृंखला सूत्र;
ये घात श्रृंखला भी टेलर श्रृंखला के उदाहरण हैं।
घातांक के समुच्चय पर
किसी घात शृंखला में नकारात्मक घातों की अनुमति नहीं है; उदाहरण के लिए, इसे घात श्रृंखला नहीं माना जाता है (चूँकि यह लॉरेंट श्रृंखला है)। इसी प्रकार, भिन्नात्मक घात जैसे की अनुमति नहीं है (किन्तु पुइसेक्स श्रृंखला देखें)। गुणांक पर निर्भर रहने की अनुमति नहीं है , इस प्रकार उदाहरण के लिए:
अभिसरण की त्रिज्या
घातश्रृंखला चर के कुछ मानों के लिए अभिसरण श्रृंखला है x, जिसमें हमेशा सम्मिलित रहेगा x = c (हमेशा की तरह, के रूप में मूल्यांकन करता है 1 और श्रृंखला का योग इस प्रकार है के लिए x = c). श्रृंखला अन्य मानों के लिए श्रृंखला को भिन्न कर सकती है x. अगर c अभिसरण का मात्र बिंदु नहीं है, फिर हमेशा संख्या होती है r साथ 0 < r ≤ ∞ ऐसा कि शृंखला जब भी अभिसरित होती है |x – c| < r और जब भी विचलन होता है |x – c| > r. जो नंबर r को घातश्रृंखला के अभिसरण की त्रिज्या कहा जाता है; सामान्यतः इसे इस प्रकार दिया जाता है
सम्मिश्र संख्याओं का समुच्चय इस प्रकार है |x – c| < rश्रृंखला की अभिसरण डिस्क कहलाती है। अभिसरण की डिस्क के अंदर श्रृंखला पूर्ण अभिसरण, और अभिसरण की डिस्क के प्रत्येक सघन स्थान उपसमुच्चय पर समान अभिसरण।
के लिए |x – c| = r, श्रृंखला के अभिसरण पर कोई सामान्य कथन नहीं है। हालाँकि, एबेल के प्रमेय में कहा गया है कि यदि श्रृंखला कुछ मूल्य के लिए अभिसरण है z ऐसा है कि |z – c| = r, तो श्रृंखला का योग x = z श्रृंखला के योग की सीमा है x = c + t (z – c) कहाँ t से कम वास्तविक चर है 1 ऐसा होता है 1.
पावर श्रृंखला पर संचालन
जोड़ और घटाव
जब दो फलन f और g को ही केंद्र c के चारों ओर घात श्रृंखला में विघटित किया जाता है, तो फलन के योग या अंतर की घात श्रृंखला शब्दवार जोड़ और घटाव द्वारा प्राप्त की जा सकती है। अर्थात यदि
दो घातश्रृंखलाओं के योग में, कम से कम, दो श्रृंखलाओं के अभिसरण की दो त्रिज्याओं में से छोटी त्रिज्या के अभिसरण की त्रिज्या होगी (और यह दोनों में से किसी से अधिक हो सकती है, जैसा कि ऊपर दिए गए उदाहरण में देखा गया है)।[2]
गुणा और भाग
के लिए समान परिभाषाओं के साथ और , उत्पाद की घातश्रृंखला और कार्यों का भागफल निम्नानुसार प्राप्त किया जा सकता है:
विभाजन के लिए, यदि कोई अनुक्रम को परिभाषित करता है द्वारा
और कोई भी शर्तों को पुनरावर्ती रूप से हल कर सकता है गुणांकों की तुलना करके।
संगत समीकरणों को हल करने से गुणांक के कुछ आव्यूहों के निर्धारकों के आधार पर सूत्र प्राप्त होते हैं और
विभेदीकरण और ीकरण
बार समारोह उपरोक्त के अनुसार घातश्रृंखला के रूप में दिया गया है, यह अभिसरण के क्षेत्र के आंतरिक (टोपोलॉजी) पर व्युत्पन्न है। प्रत्येक पद को अलग-अलग मानकर इसे आसानी से व्युत्पन्न और अभिन्न बनाया जा सकता है:
विश्लेषणात्मक फलन
'आर' या 'सी' के कुछ खुले सेट यू पर परिभाषित फ़ंक्शन एफ को विश्लेषणात्मक फ़ंक्शन कहा जाता है यदि यह स्थानीय रूप से अभिसरण घातश्रृंखला द्वारा दिया जाता है। इसका मतलब यह है कि प्रत्येक a ∈ U में खुला पड़ोस (टोपोलॉजी) V ⊆ U है, जैसे कि केंद्र a के साथ घातश्रृंखला उपस्थित है जो प्रत्येक x ∈ V के लिए f(x) में परिवर्तित होती है।
अभिसरण की सकारात्मक त्रिज्या वाली प्रत्येक घातश्रृंखला अपने अभिसरण क्षेत्र के टोपोलॉजिकल इंटीरियर पर विश्लेषणात्मक है। सभी होलोमोर्फिक फ़ंक्शन जटिल-विश्लेषणात्मक हैं। विश्लेषणात्मक कार्यों के योग और उत्पाद विश्लेषणात्मक होते हैं, जैसे कि भागफल तब तक विश्लेषणात्मक होते हैं जब तक हर गैर-शून्य होता है।
यदि कोई फ़ंक्शन विश्लेषणात्मक है, तो यह असीम रूप से भिन्न होता है, लेकिन वास्तविक मामले में इसका विपरीत सामान्यतः सत्य नहीं होता है। विश्लेषणात्मक फ़ंक्शन के लिए, गुणांक an के रूप में गणना की जा सकती है
विश्लेषणात्मक फ़ंक्शन का वैश्विक रूप निम्नलिखित अर्थों में उसके स्थानीय व्यवहार से पूरी तरह से निर्धारित होता है: यदि एफ और जी दो विश्लेषणात्मक फ़ंक्शन हैं जो ही कनेक्टिविटी ओपन सेट यू पर परिभाषित हैं, और यदि कोई तत्व उपस्थित है c ∈ U ऐसा है कि f(n)(c) = g(n)(c) सभी के लिए n ≥ 0, तब f(x) = g(x) सभी के लिए x ∈ U.
यदि अभिसरण आर की त्रिज्या के साथ घातश्रृंखला दी गई है, तो कोई श्रृंखला की विश्लेषणात्मक निरंतरता पर विचार कर सकता है, अर्थात विश्लेषणात्मक कार्य एफ जो कि बड़े सेटों पर परिभाषित होते हैं { x | |x − c| < r} और इस सेट पर दी गई पावर श्रृंखला से सहमत हूं। संख्या r निम्नलिखित अर्थ में अधिकतम है: हमेशा जटिल संख्या उपस्थित होती है x साथ |x − c| = r ऐसा कि श्रृंखला की किसी भी विश्लेषणात्मक निरंतरता को परिभाषित नहीं किया जा सकता है x.
विश्लेषणात्मक फ़ंक्शन के व्युत्क्रम फ़ंक्शन की घातश्रृंखला विस्तार को लैग्रेंज व्युत्क्रम प्रमेय का उपयोग करके निर्धारित किया जा सकता है।
सीमा के निकट व्यवहार
अभिसरण की सकारात्मक त्रिज्या के साथ घातश्रृंखला का योग अभिसरण डिस्क के आंतरिक भाग में प्रत्येक बिंदु पर विश्लेषणात्मक कार्य है। हालाँकि, उस डिस्क की सीमा पर बिंदुओं पर भिन्न व्यवहार हो सकता है। उदाहरण के लिए:
- विचलन जबकि योग विश्लेषणात्मक फ़ंक्शन तक विस्तारित होता है: अभिसरण की त्रिज्या के समान है और हर बिंदु पर अलग हो जाता है . फिर भी, योग है को छोड़कर, जो विमान के हर बिंदु पर विश्लेषणात्मक है .
- कुछ बिंदुओं पर अभिसरण दूसरों पर भिन्न: अभिसरण की त्रिज्या है . इसके लिए अभिसरण होता है , जबकि यह भिन्न होता है .
- सीमा के प्रत्येक बिंदु पर पूर्ण अभिसरण: अभिसरण की त्रिज्या है , जबकि यह हर बिंदु पर पूर्णतः और समान रूप से अभिसरित होता है हार्मोनिक श्रृंखला (गणित) के साथ लागू वीयरस्ट्रैस एम-टेस्ट के कारण#p-श्रृंखला|हाइपर-हार्मोनिक अभिसरण श्रृंखला .
- अभिसरण की डिस्क के बंद होने पर अभिसरण लेकिन निरंतर योग नहीं: वाकलॉ सिएरपिंस्की|सिएरपिंस्की ने उदाहरण दिया[3] अभिसरण की त्रिज्या के साथ घातश्रृंखला की , सभी बिंदुओं पर अभिसरण , लेकिन योग असीमित कार्य है और, विशेष रूप से, असंतत है। सीमा बिंदु पर तरफा निरंतरता के लिए पर्याप्त शर्त हाबिल के प्रमेय द्वारा दी गई है।
औपचारिक घात श्रृंखला
अमूर्त बीजगणित में, व्यक्ति वास्तविक और जटिल संख्याओं के क्षेत्र तक सीमित हुए बिना और अभिसरण के विषय में विचार किए बिना घात श्रृंखला के सार को पकड़ने का प्रयास करता है। यह औपचारिक घात श्रृंखला की अवधारणा की ओर ले जाता है, जो बीजगणितीय कॉम्बिनेटरिक्स में महान उपयोगिता की अवधारणा है।
कई चर में पावर श्रृंखला
बहुपरिवर्तनीय कलन के प्रयोजनों के लिए सिद्धांत का विस्तार आवश्यक है। यहाँ घातश्रृंखला को रूप की अनंत श्रृंखला के रूप में परिभाषित किया गया है
ऐसी श्रृंखला का सिद्धांत ल-चर श्रृंखला की तुलना में अधिक पेचीदा है, जिसमें अभिसरण के अधिक जटिल क्षेत्र हैं। उदाहरण के लिए, पावर श्रृंखला सेट में बिल्कुल अभिसरण है दो अतिपरवलय के बीच. (यह लॉग-उत्तल सेट का उदाहरण है, इस अर्थ में कि बिंदुओं का सेट , कहाँ उपरोक्त क्षेत्र में स्थित, उत्तल समुच्चय है। अधिक सामान्यतः, कोई यह दिखा सकता है कि जब c=0, पूर्ण अभिसरण के क्षेत्र का आंतरिक भाग हमेशा इस अर्थ में लॉग-उत्तल सेट होता है।) दूसरी ओर, अभिसरण के इस क्षेत्र के आंतरिक भाग में कोई अंतर और ीकृत हो सकता है श्रृंखला चिह्न के अंतर्गत, ठीक वैसे ही जैसे कोई सामान्य घातश्रृंखला के साथ कर सकता है।[4]
घात श्रृंखला का क्रम
मान लीजिए α घात श्रृंखला f(x1, x2, …, xn) के लिए बहु-सूचकांक है। घात श्रृंखला f के क्रम को न्यूनतम मान के रूप में परिभाषित किया गया है इस प्रकार है कि aα ≠ 0 है। , या यदि f ≡ 0 है। विशेष रूप से, एकल चर x में घात श्रृंखला f(x) के लिए, f का क्रम गैर-शून्य गुणांक के साथ x की सबसे छोटी घात है। यह परिभाषा सरलता से लॉरेंट श्रृंखला तक विस्तारित है।
टिप्पणियाँ
- ↑ Howard Levi (1967). बहुपद, घात श्रृंखला, और कैलकुलस. Van Nostrand. p. 24.
- ↑ Erwin Kreyszig, Advanced Engineering Mathematics, 8th ed, page 747
- ↑ Wacław Sierpiński (1916). "Sur une série potentielle qui, étant convergente en tout point de son cercle de convergence, représente sur ce cercle une fonction discontinue. (French)". Rendiconti del Circolo Matematico di Palermo. Palermo Rend. 41: 187–190. doi:10.1007/BF03018294. JFM 46.1466.03. S2CID 121218640.
- ↑ Beckenbach, E. F. (1948). "उत्तल कार्य". Bulletin of the American Mathematical Society. 54 (5): 439–460. doi:10.1090/S0002-9904-1948-08994-7.
संदर्भ
- Solomentsev, E.D. (2001) [1994], "Power series", Encyclopedia of Mathematics, EMS Press