सिग्नल पृथक्करण: Difference between revisions
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
स्रोत पृथक्करण, ब्लाइंड सिग्नल पृथक्करण (बीएसएस) या ब्लाइंड सोर्स पृथक्करण सूचना की सहायता के बिना या स्रोत संकेतों और मिश्रण के बारे में बहुत कम जानकारी की सहायता के बिना या बहुत कम जानकारी के साथ मिश्रित प्रक्रिया [[संकेतों के एक सेट]] के स्रोत को भिन्न करता है। इसे सामान्यतः [[डिजिटल सिग्नल प्रोसेसिंग]] में प्रयुक्त किया जाता है और इसमें [[सिग्नल (सूचना सिद्धांत)]] के मिश्रण का विश्लेषण सम्मलित होता है; इसका उद्देश्य मिश्रण सिग्नल से मूल घटक संकेतों को पुनर्प्राप्त करना है और इस प्रकार स्रोत पृथक्करण समस्या का मौलिक उदाहरण [[ मिश्रित शराब पार्टी | मिश्रित कॉकटेल पार्टी]] समस्या के रूप में है, जहां एक कमरे में कई लोग एक साथ बात करते है और एक श्रोता किसी एक चर्चा का अनुसरण करने का प्रयास करता है। जिससे कि मानव मस्तिष्क इस प्रकार की श्रवण स्रोत पृथक्करण समस्या को संभाल सकता है, लेकिन डिजिटल सिग्नल प्रोसेसिंग में यह एक कठिन समस्या है। | स्रोत पृथक्करण, ब्लाइंड सिग्नल पृथक्करण (बीएसएस) या ब्लाइंड सोर्स पृथक्करण सूचना की सहायता के बिना या स्रोत संकेतों और मिश्रण के बारे में बहुत कम जानकारी की सहायता के बिना या बहुत कम जानकारी के साथ मिश्रित प्रक्रिया [[संकेतों के एक सेट]] के स्रोत को भिन्न करता है। इसे सामान्यतः [[डिजिटल सिग्नल प्रोसेसिंग]] में प्रयुक्त किया जाता है और इसमें [[सिग्नल (सूचना सिद्धांत)]] के मिश्रण का विश्लेषण सम्मलित होता है; इसका उद्देश्य मिश्रण सिग्नल से मूल घटक संकेतों को पुनर्प्राप्त करना है और इस प्रकार स्रोत पृथक्करण समस्या का मौलिक उदाहरण [[ मिश्रित शराब पार्टी | मिश्रित कॉकटेल पार्टी]] समस्या के रूप में है, जहां एक कमरे में कई लोग एक साथ बात करते है और एक श्रोता किसी एक चर्चा का अनुसरण करने का प्रयास करता है। जिससे कि मानव मस्तिष्क इस प्रकार की श्रवण स्रोत पृथक्करण समस्या को संभाल सकता है, लेकिन डिजिटल सिग्नल प्रोसेसिंग में यह एक कठिन समस्या है। | ||
यह समस्या | यह समस्या सामान्यतः अत्यधिक अल्पनिर्धारित प्रणाली के रूप में है, लेकिन आश्चर्यजनक विभिन्न परिस्थितियों में उपयोगी समाधान निकाले जा सकते हैं। इस क्षेत्र का अधिकांश प्रारंभिक साहित्य ऑडियो जैसे अस्थायी संकेतों को भिन्न करने पर केंद्रित है। चूंकि, ब्लाइंड सिग्नल पृथक्करण अब नियमित रूप से [[बहुआयामी डेटा]], जैसे [[डिजिटल छवि]] और [[टेंसर]] पर किया जाता है।<ref name="cj">P. Comon and C. Jutten (editors). “Handbook of Blind Source Separation, Independent Component Analysis and Applications” Academic Press, {{ISBN|978-2-296-12827-9}}</ref> जिसमें समय का कोई भी आयाम सम्मलित नहीं होता है। | ||
इस समस्या के समाधान के लिए कई दृष्टिकोण प्रस्तावित किए गए हैं लेकिन विकास अभी भी प्रगति पर | इस समस्या के समाधान के लिए कई दृष्टिकोण प्रस्तावित किए गए हैं लेकिन विकास अभी भी प्रगति पर है और इस प्रकार कुछ अधिक सफल दृष्टिकोण [[प्रमुख घटक विश्लेषण]] और [[स्वतंत्र घटक विश्लेषण]] के रूप में हैं, जो अच्छी तरह से काम करते हैं जब कोई देरी या प्रतिध्वन के रूप में उपस्थित नहीं होते है अर्थात यही कारण है कि इस समस्या को आसान बनाया गया है। कम्प्यूटेशनल [[श्रवण दृश्य विश्लेषण]] का क्षेत्र मानव श्रवण पर आधारित दृष्टिकोण का उपयोग करके श्रवण स्रोत पृथक्करण प्राप्त करने का प्रयास करता है। | ||
मानव मस्तिष्क को भी वास्तविक समय में इस समस्या का समाधान करना | मानव मस्तिष्क को भी वास्तविक समय में इस समस्या का समाधान करना होता है। मानवीय धारणा में इस क्षमता को सामान्यतः श्रवण दृश्य विश्लेषण या [[कॉकटेल पार्टी प्रभाव]] के रूप में जाना जाता है। | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
Line 38: | Line 38: | ||
== गणितीय निरूपण == | == गणितीय निरूपण == | ||
[[File:BSS-flow-chart.png|thumb|बीएसएस का मूल फ़्लोचार्ट]]व्यक्तिगत स्रोत संकेतों का सेट, <math>s(t) = (s_1(t), \dots, s_n(t))^T</math>, एक मैट्रिक्स का उपयोग करके 'मिश्रित' है, <math>A=[a_{ij}] \in \mathbb{R}^{m \times n}</math>, 'मिश्रित' संकेतों का एक सेट तैयार करने के लिए, <math> x(t)=(x_1(t), \dots, x_m(t))^T </math>, निम्नलिखित नुसार। | [[File:BSS-flow-chart.png|thumb|बीएसएस का मूल फ़्लोचार्ट]]व्यक्तिगत स्रोत संकेतों का सेट, <math>s(t) = (s_1(t), \dots, s_n(t))^T</math>, एक मैट्रिक्स का उपयोग करके 'मिश्रित' है, <math>A=[a_{ij}] \in \mathbb{R}^{m \times n}</math>, 'मिश्रित' संकेतों का एक सेट तैयार करने के लिए, <math> x(t)=(x_1(t), \dots, x_m(t))^T </math>, निम्नलिखित नुसार। सामान्यतः , <math>n</math> के बराबर है <math>m</math>. अगर <math>m > n</math>, तो समीकरणों की प्रणाली अतिनिर्धारित है और इस प्रकार पारंपरिक रैखिक विधि का उपयोग करके इसे अमिश्रित किया जा सकता है। अगर <math>n > m</math>, सिस्टम अनिर्धारित है और अमिश्रित संकेतों को पुनर्प्राप्त करने के लिए एक गैर-रेखीय विधि को नियोजित किया जाना चाहिए। सिग्नल स्वयं बहुआयामी हो सकते हैं। | ||
<math>x(t) = A\cdot s(t)</math> | <math>x(t) = A\cdot s(t)</math> | ||
Line 47: | Line 47: | ||
== दृष्टिकोण == | == दृष्टिकोण == | ||
चूँकि समस्या की मुख्य कठिनाई इसका कम निर्धारण है, अंध स्रोत पृथक्करण की विधियाँ | चूँकि समस्या की मुख्य कठिनाई इसका कम निर्धारण है, अंध स्रोत पृथक्करण की विधियाँ सामान्यतः संभावित समाधानों के सेट को इस तरह से सीमित करने की कोशिश करती हैं कि वांछित समाधान को बाहर करने की संभावना नहीं है। एक दृष्टिकोण में, प्रमुख घटक विश्लेषण और [[स्वतंत्र घटक विश्लेषण]] घटक विश्लेषण द्वारा उदाहरण दिया गया है, एक ऐसे स्रोत संकेतों की तलाश करता है जो संभाव्य या [[सूचना सिद्धांत]] | सूचना-सैद्धांतिक अर्थ में न्यूनतम सहसंबंध या अधिकतम [[स्वतंत्रता (संभावना)]] हैं। एक दूसरा दृष्टिकोण, जिसका उदाहरण गैर-नकारात्मक [[गैर-नकारात्मक मैट्रिक्स गुणनखंडन]], स्रोत संकेतों पर संरचनात्मक बाधाएं लगाना है। ये संरचनात्मक बाधाएं सिग्नल के जेनरेटिव मॉडल से प्राप्त की जा सकती हैं, लेकिन सामान्यतः ये अनुमान अच्छे अनुभवजन्य प्रदर्शन द्वारा उचित ठहराए जाते हैं। दूसरे दृष्टिकोण में एक सामान्य विषय सिग्नल पर किसी प्रकार की कम-जटिलता बाधा लगाना है, जैसे सिग्नल स्थान के लिए कुछ [[आधार (रैखिक बीजगणित)]] में [[विरलता]]। यह दृष्टिकोण विशेष रूप से प्रभावी हो सकता है यदि किसी को संपूर्ण सिग्नल की नहीं, बल्कि केवल इसकी सबसे प्रमुख विशेषताओं की आवश्यकता हो। | ||
=== विधियाँ === | === विधियाँ === |
Revision as of 23:17, 3 July 2023
स्रोत पृथक्करण, ब्लाइंड सिग्नल पृथक्करण (बीएसएस) या ब्लाइंड सोर्स पृथक्करण सूचना की सहायता के बिना या स्रोत संकेतों और मिश्रण के बारे में बहुत कम जानकारी की सहायता के बिना या बहुत कम जानकारी के साथ मिश्रित प्रक्रिया संकेतों के एक सेट के स्रोत को भिन्न करता है। इसे सामान्यतः डिजिटल सिग्नल प्रोसेसिंग में प्रयुक्त किया जाता है और इसमें सिग्नल (सूचना सिद्धांत) के मिश्रण का विश्लेषण सम्मलित होता है; इसका उद्देश्य मिश्रण सिग्नल से मूल घटक संकेतों को पुनर्प्राप्त करना है और इस प्रकार स्रोत पृथक्करण समस्या का मौलिक उदाहरण मिश्रित कॉकटेल पार्टी समस्या के रूप में है, जहां एक कमरे में कई लोग एक साथ बात करते है और एक श्रोता किसी एक चर्चा का अनुसरण करने का प्रयास करता है। जिससे कि मानव मस्तिष्क इस प्रकार की श्रवण स्रोत पृथक्करण समस्या को संभाल सकता है, लेकिन डिजिटल सिग्नल प्रोसेसिंग में यह एक कठिन समस्या है।
यह समस्या सामान्यतः अत्यधिक अल्पनिर्धारित प्रणाली के रूप में है, लेकिन आश्चर्यजनक विभिन्न परिस्थितियों में उपयोगी समाधान निकाले जा सकते हैं। इस क्षेत्र का अधिकांश प्रारंभिक साहित्य ऑडियो जैसे अस्थायी संकेतों को भिन्न करने पर केंद्रित है। चूंकि, ब्लाइंड सिग्नल पृथक्करण अब नियमित रूप से बहुआयामी डेटा, जैसे डिजिटल छवि और टेंसर पर किया जाता है।[1] जिसमें समय का कोई भी आयाम सम्मलित नहीं होता है।
इस समस्या के समाधान के लिए कई दृष्टिकोण प्रस्तावित किए गए हैं लेकिन विकास अभी भी प्रगति पर है और इस प्रकार कुछ अधिक सफल दृष्टिकोण प्रमुख घटक विश्लेषण और स्वतंत्र घटक विश्लेषण के रूप में हैं, जो अच्छी तरह से काम करते हैं जब कोई देरी या प्रतिध्वन के रूप में उपस्थित नहीं होते है अर्थात यही कारण है कि इस समस्या को आसान बनाया गया है। कम्प्यूटेशनल श्रवण दृश्य विश्लेषण का क्षेत्र मानव श्रवण पर आधारित दृष्टिकोण का उपयोग करके श्रवण स्रोत पृथक्करण प्राप्त करने का प्रयास करता है।
मानव मस्तिष्क को भी वास्तविक समय में इस समस्या का समाधान करना होता है। मानवीय धारणा में इस क्षमता को सामान्यतः श्रवण दृश्य विश्लेषण या कॉकटेल पार्टी प्रभाव के रूप में जाना जाता है।
अनुप्रयोग
कॉकटेल पार्टी समस्या
एक कॉकटेल पार्टी में, लोगों का एक समूह एक ही समय में बात कर रहा है। आपके पास मिश्रित सिग्नल पकड़ने वाले कई माइक्रोफ़ोन हैं, लेकिन आप एक व्यक्ति के भाषण को भिन्न करना चाहते हैं। मिश्रित संकेतों का उपयोग करके व्यक्तिगत स्रोतों को भिन्न करने के लिए बीएसएस का उपयोग किया जा सकता है। शोर की उपस्थिति में, समर्पित अनुकूलन मानदंड का उपयोग करने की आवश्यकता है[2]
छवि प्रसंस्करण
चित्र 2 बीएसएस की मूल अवधारणा को दर्शाता है। व्यक्तिगत स्रोत सिग्नलों के साथ-साथ मिश्रित सिग्नल भी दिखाए जाते हैं जो प्राप्त सिग्नल होते हैं। बीएसएस का उपयोग मिश्रित संकेतों को भिन्न करने के लिए किया जाता है, केवल मिश्रित संकेतों को जानने के लिए और मूल सिग्नल या उन्हें कैसे मिश्रित किया गया था, इसके बारे में कुछ भी नहीं बताया जाता है। भिन्न किए गए सिग्नल स्रोत सिग्नल के केवल अनुमान हैं। भिन्न की गई छवियों को, Python और शोगुन टूलबॉक्स का उपयोग करके Eigen-matrices के संयुक्त सन्निकटन विकर्णीकरण (Eigen के संयुक्त सन्निकटन विकर्णीकरण) का उपयोग करके भिन्न किया गया था। -मैट्रिसेस) एल्गोरिदम जो स्वतंत्र घटक विश्लेषण, आईसीए पर आधारित है।[3] इस टूलबॉक्स विधि का उपयोग बहु-आयामों के साथ किया जा सकता है लेकिन आसान दृश्य पहलू के लिए छवियों (2-डी) का उपयोग किया गया था।
मेडिकल इमेजिंग
इस क्षेत्र में शोध किए जा रहे व्यावहारिक अनुप्रयोगों में से एक मैग्नेटोएन्सेफलोग्राफी (एमईजी) के साथ मस्तिष्क की चिकित्सा इमेजिंग है। इस प्रकार की इमेजिंग में सिर के बाहर चुंबकीय क्षेत्र का सावधानीपूर्वक माप सम्मलित होता है जिससे सिर के अंदरूनी हिस्से की सटीक 3डी-तस्वीर मिलती है। हालाँकि, विद्युत चुम्बकीय क्षेत्र के बाहरी स्रोत, जैसे कि विषय की बांह पर कलाई घड़ी, माप की सटीकता को काफी कम कर देगी। मापे गए सिग्नलों पर स्रोत पृथक्करण तकनीकों को प्रयुक्त करने से सिग्नल से अवांछित कलाकृतियों को हटाने में मदद मिल सकती है।
ईईजी
इलेक्ट्रोएन्सेफलोग्राम (ईईजी) और मैग्नेटोएन्सेफलोग्राफी (एमईजी) में, मांसपेशियों की गतिविधि का हस्तक्षेप मस्तिष्क गतिविधि से वांछित संकेत को छिपा देता है। हालाँकि, बीएसएस का उपयोग दोनों को भिन्न करने के लिए किया जा सकता है ताकि मस्तिष्क गतिविधि का सटीक प्रतिनिधित्व प्राप्त किया जा सके।[4][5]
संगीत
एक अन्य अनुप्रयोग संगीत संकेतों को भिन्न करना है। अपेक्षाकृत सरल संकेतों के स्टीरियो मिश्रण के लिए अब काफी सटीक पृथक्करण करना संभव है, हालांकि कुछ सोनिक कलाकृतियाँ बनी हुई हैं।
अन्य
अन्य अनुप्रयोगों:[4]* संचार
- स्टॉक भविष्यवाणी
- भूकंपीय निगरानी
- पाठ दस्तावेज़ विश्लेषण
गणितीय निरूपण
व्यक्तिगत स्रोत संकेतों का सेट, , एक मैट्रिक्स का उपयोग करके 'मिश्रित' है, , 'मिश्रित' संकेतों का एक सेट तैयार करने के लिए, , निम्नलिखित नुसार। सामान्यतः , के बराबर है . अगर , तो समीकरणों की प्रणाली अतिनिर्धारित है और इस प्रकार पारंपरिक रैखिक विधि का उपयोग करके इसे अमिश्रित किया जा सकता है। अगर , सिस्टम अनिर्धारित है और अमिश्रित संकेतों को पुनर्प्राप्त करने के लिए एक गैर-रेखीय विधि को नियोजित किया जाना चाहिए। सिग्नल स्वयं बहुआयामी हो सकते हैं।
उपरोक्त समीकरण प्रभावी रूप से निम्नानुसार 'उलटा' है। ब्लाइंड सोर्स पृथक्करण मिश्रित संकेतों के सेट को भिन्न करता है, , एक 'अनमिक्सिंग' मैट्रिक्स के निर्धारण के माध्यम से, , मूल संकेतों का एक अनुमान 'पुनर्प्राप्त' करने के लिए, .[6][7][4]
दृष्टिकोण
चूँकि समस्या की मुख्य कठिनाई इसका कम निर्धारण है, अंध स्रोत पृथक्करण की विधियाँ सामान्यतः संभावित समाधानों के सेट को इस तरह से सीमित करने की कोशिश करती हैं कि वांछित समाधान को बाहर करने की संभावना नहीं है। एक दृष्टिकोण में, प्रमुख घटक विश्लेषण और स्वतंत्र घटक विश्लेषण घटक विश्लेषण द्वारा उदाहरण दिया गया है, एक ऐसे स्रोत संकेतों की तलाश करता है जो संभाव्य या सूचना सिद्धांत | सूचना-सैद्धांतिक अर्थ में न्यूनतम सहसंबंध या अधिकतम स्वतंत्रता (संभावना) हैं। एक दूसरा दृष्टिकोण, जिसका उदाहरण गैर-नकारात्मक गैर-नकारात्मक मैट्रिक्स गुणनखंडन, स्रोत संकेतों पर संरचनात्मक बाधाएं लगाना है। ये संरचनात्मक बाधाएं सिग्नल के जेनरेटिव मॉडल से प्राप्त की जा सकती हैं, लेकिन सामान्यतः ये अनुमान अच्छे अनुभवजन्य प्रदर्शन द्वारा उचित ठहराए जाते हैं। दूसरे दृष्टिकोण में एक सामान्य विषय सिग्नल पर किसी प्रकार की कम-जटिलता बाधा लगाना है, जैसे सिग्नल स्थान के लिए कुछ आधार (रैखिक बीजगणित) में विरलता। यह दृष्टिकोण विशेष रूप से प्रभावी हो सकता है यदि किसी को संपूर्ण सिग्नल की नहीं, बल्कि केवल इसकी सबसे प्रमुख विशेषताओं की आवश्यकता हो।
विधियाँ
ब्लाइंड सिग्नल पृथक्करण की विभिन्न विधियाँ हैं:
- प्रमुख घटक विश्लेषण
- विलक्षण मान अपघटन
- स्वतंत्र घटक विश्लेषण[8]
- आश्रित घटक विश्लेषण
- गैर-नकारात्मक मैट्रिक्स गुणनखंडन
- कम जटिलता वाली कोडिंग और डिकोडिंग
- स्थिर उपस्थान विश्लेषण
- सामान्य स्थानिक पैटर्न
- विहित सहसंबंध विश्लेषण
यह भी देखें
- अनुकूली फ़िल्टरिंग
- सेलेमनी सॉफ्टवेयर#डायरेक्ट नोट एक्सेस
- कॉलिन चेरी
- विखंडन
- फैक्टोरियल कोड
- इन्फोमैक्स सिद्धांत
- विभाजन (छवि प्रसंस्करण)
- भाषण विभाजन
संदर्भ
- ↑ P. Comon and C. Jutten (editors). “Handbook of Blind Source Separation, Independent Component Analysis and Applications” Academic Press, ISBN 978-2-296-12827-9
- ↑ P. Comon, Contrasts, Independent Component Analysis, and Blind Deconvolution, "Int. Journal Adapt. Control Sig. Proc.", Wiley, Apr. 2004. HAL link
- ↑ Kevin Hughes “Blind Source Separation on Images with Shogun” http://shogun-toolbox.org/static/notebook/current/bss_image.html
- ↑ 4.0 4.1 4.2 Aapo Hyvarinen, Juha Karhunen, and Erkki Oja. “Independent Component Analysis” https://www.cs.helsinki.fi/u/ahyvarin/papers/bookfinal_ICA.pdf pp. 147–148, pp. 410–411, pp. 441–442, p. 448
- ↑ Congedo, Marco; Gouy-Pailler, Cedric; Jutten, Christian (December 2008). "दूसरे क्रम के आँकड़ों के अनुमानित संयुक्त विकर्णीकरण द्वारा मानव इलेक्ट्रोएन्सेफलोग्राम के अंधा स्रोत पृथक्करण पर।". Clinical Neurophysiology. 119 (12): 2677–2686. arXiv:0812.0494. doi:10.1016/j.clinph.2008.09.007. PMID 18993114. S2CID 5835843.
- ↑ Jean-Francois Cardoso “Blind Signal Separation: statistical Principles” http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.462.9738&rep=rep1&type=pdf
- ↑ Rui Li, Hongwei Li, and Fasong Wang. “Dependent Component Analysis: Concepts and Main Algorithms” http://www.jcomputers.us/vol5/jcp0504-13.pdf
- ↑ Shlens, Jonathon. "A tutorial on independent component analysis." arXiv:1404.2986