नियतिवादी प्रणाली: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|System in which no randomness is involved in determining its future states}} | {{Short description|System in which no randomness is involved in determining its future states}} | ||
{{Probability fundamentals}} | {{Probability fundamentals}} | ||
गणित, [[कंप्यूटर विज्ञान]] और भौतिकी में, एक नियतात्मक प्रणाली | गणित, [[कंप्यूटर विज्ञान]] और भौतिकी में, एक नियतात्मक प्रणाली ऐसी प्रणाली है जिसमें प्रणाली की भविष्य की स्थितियों के विकास में कोई यादृच्छिकता सम्मिलित नहीं होती है।<ref>[http://www.daviddarling.info/encyclopedia/D/deterministic_system.html deterministic system] - definition at ''The Internet Encyclopedia of Science''</ref> इस प्रकार नियत मूल मॉडल किसी भी आरंभिक स्थिति या आरंभिक स्थिति से हमेशा के लिए समान ऑब्जेक्टिव विज़ुअलाइज़ेशन दिया गया है।<ref>[http://www.scholarpedia.org/article/Dynamical_systems Dynamical systems] at [[Scholarpedia]]</ref> | ||
==भौतिकी में== | ==भौतिकी में== | ||
Line 9: | Line 9: | ||
==गणित में== | ==गणित में== | ||
[[अराजकता सिद्धांत]] में अध्ययन की जाने वाली प्रणालियाँ नियतिवादी हैं। यदि प्रारंभिक स्थिति ठीक-ठीक ज्ञात होती, तो सैद्धांतिक रूप से ऐसी प्रणाली की भविष्य की स्थिति की भविष्यवाणी की जा सकती थी। हालाँकि, व्यवहार में, भविष्य की स्थिति के बारे में ज्ञान उस सटीकता से सीमित है जिसके साथ प्रारंभिक स्थिति को मापा जा सकता है, और अराजक प्रणालियों को प्रारंभिक स्थितियों पर एक | [[अराजकता सिद्धांत]] में अध्ययन की जाने वाली प्रणालियाँ नियतिवादी हैं। यदि प्रारंभिक स्थिति ठीक-ठीक ज्ञात होती, तो सैद्धांतिक रूप से ऐसी प्रणाली की भविष्य की स्थिति की भविष्यवाणी की जा सकती थी। हालाँकि, व्यवहार में, भविष्य की स्थिति के बारे में ज्ञान उस सटीकता से सीमित है जिसके साथ प्रारंभिक स्थिति को मापा जा सकता है, और अराजक प्रणालियों को प्रारंभिक स्थितियों पर एक दृढ़ निर्भरता की विशेषता है। प्रारंभिक स्थितियों के प्रति इस संवेदनशीलता को [[ल्यपुनोव प्रतिपादक|ल्यपुनोव]] प्रतिपादकों के साथ मापा जा सकता है। | ||
[[मार्कोव श्रृंखला|मार्कोव श्रृंखलाएं]] और अन्य यादृच्छिक वॉक नियतात्मक प्रणालियां नहीं हैं, क्योंकि उनका विकास यादृच्छिक विकल्पों पर निर्भर करता है। | [[मार्कोव श्रृंखला|मार्कोव श्रृंखलाएं]] और अन्य यादृच्छिक वॉक नियतात्मक प्रणालियां नहीं हैं, क्योंकि उनका विकास यादृच्छिक विकल्पों पर निर्भर करता है। | ||
Line 15: | Line 15: | ||
==कंप्यूटर विज्ञान में== | ==कंप्यूटर विज्ञान में== | ||
गणना का | गणना का नियतात्मक मॉडल, उदाहरण के लिए, [[नियतात्मक ट्यूरिंग मशीन]], गणना का एक मॉडल है जैसे कि मशीन की क्रमिक स्थिति और किए जाने वाले संचालन पूरी तरह से पिछली स्थिति से निर्धारित होते हैं। | ||
[[नियतात्मक एल्गोरिथ्म]] एक एल्गोरिथ्म है, जो एक विशेष इनपुट दिए जाने पर, हमेशा एक ही आउटपुट उत्पन्न करेगा, जिसमें अंतर्निहित मशीन हमेशा राज्यों के समान अनुक्रम से गुजरेगी। ऐसे गैर-नियतात्मक एल्गोरिदम हो सकते हैं जो एक नियतिवादी मशीन पर चलते हैं, उदाहरण के लिए, एक एल्गोरिदम जो यादृच्छिक विकल्पों पर निर्भर करता है। सामान्यतः, इस तरह के यादृच्छिक विकल्पों के लिए, छद्म यादृच्छिक संख्या एक जनरेटर का उपयोग करता है, लेकिन एक भी कंप्यूटर घड़ी द्वारा दिए गए समय के अंतिम अंक जैसे कुछ बाहरी भौतिक प्रक्रिया का उपयोग कर सकते हैं। | |||
छद्म आयामी संख्या जनरेटर एक नियतात्मक एल्गोरिथ्म है, जिसे संख्याओं के अनुक्रम उत्पन्न करने के लिए डिज़ाइन किया गया है जो यादृच्छिक अनुक्रमों के रूप में व्यवहार करते हैं। हालाँकि, एक [[हार्डवेयर यादृच्छिक संख्या जनरेटर]] गैर-नियतात्मक हो सकता है। | |||
==अन्य== | ==अन्य== |
Revision as of 11:58, 7 July 2023
Part of a series on statistics |
Probability theory |
---|
गणित, कंप्यूटर विज्ञान और भौतिकी में, एक नियतात्मक प्रणाली ऐसी प्रणाली है जिसमें प्रणाली की भविष्य की स्थितियों के विकास में कोई यादृच्छिकता सम्मिलित नहीं होती है।[1] इस प्रकार नियत मूल मॉडल किसी भी आरंभिक स्थिति या आरंभिक स्थिति से हमेशा के लिए समान ऑब्जेक्टिव विज़ुअलाइज़ेशन दिया गया है।[2]
भौतिकी में
विभेदक समीकरणों द्वारा वर्णित भौतिक नियम नियतिवादी प्रणालियों का प्रतिनिधित्व करते हैं, भले ही किसी भी समय प्रणाली की स्थिति का स्पष्ट रूप से वर्णन करना आयासपूर्ण हो सकता है।
क्वांटम यांत्रिकी में, श्रोडिंगर समीकरण, जो किसी प्रणाली के तरंग फ़ंक्शन के निरंतर समय के विकास का वर्णन करता है, नियतात्मक है। हालाँकि, किसी सिस्टम के तरंग फ़ंक्शन और सिस्टम के अवलोकनीय गुणों के बीच संबंध गैर-नियतात्मक प्रतीत होता है।
गणित में
अराजकता सिद्धांत में अध्ययन की जाने वाली प्रणालियाँ नियतिवादी हैं। यदि प्रारंभिक स्थिति ठीक-ठीक ज्ञात होती, तो सैद्धांतिक रूप से ऐसी प्रणाली की भविष्य की स्थिति की भविष्यवाणी की जा सकती थी। हालाँकि, व्यवहार में, भविष्य की स्थिति के बारे में ज्ञान उस सटीकता से सीमित है जिसके साथ प्रारंभिक स्थिति को मापा जा सकता है, और अराजक प्रणालियों को प्रारंभिक स्थितियों पर एक दृढ़ निर्भरता की विशेषता है। प्रारंभिक स्थितियों के प्रति इस संवेदनशीलता को ल्यपुनोव प्रतिपादकों के साथ मापा जा सकता है।
मार्कोव श्रृंखलाएं और अन्य यादृच्छिक वॉक नियतात्मक प्रणालियां नहीं हैं, क्योंकि उनका विकास यादृच्छिक विकल्पों पर निर्भर करता है।
कंप्यूटर विज्ञान में
गणना का नियतात्मक मॉडल, उदाहरण के लिए, नियतात्मक ट्यूरिंग मशीन, गणना का एक मॉडल है जैसे कि मशीन की क्रमिक स्थिति और किए जाने वाले संचालन पूरी तरह से पिछली स्थिति से निर्धारित होते हैं।
नियतात्मक एल्गोरिथ्म एक एल्गोरिथ्म है, जो एक विशेष इनपुट दिए जाने पर, हमेशा एक ही आउटपुट उत्पन्न करेगा, जिसमें अंतर्निहित मशीन हमेशा राज्यों के समान अनुक्रम से गुजरेगी। ऐसे गैर-नियतात्मक एल्गोरिदम हो सकते हैं जो एक नियतिवादी मशीन पर चलते हैं, उदाहरण के लिए, एक एल्गोरिदम जो यादृच्छिक विकल्पों पर निर्भर करता है। सामान्यतः, इस तरह के यादृच्छिक विकल्पों के लिए, छद्म यादृच्छिक संख्या एक जनरेटर का उपयोग करता है, लेकिन एक भी कंप्यूटर घड़ी द्वारा दिए गए समय के अंतिम अंक जैसे कुछ बाहरी भौतिक प्रक्रिया का उपयोग कर सकते हैं।
छद्म आयामी संख्या जनरेटर एक नियतात्मक एल्गोरिथ्म है, जिसे संख्याओं के अनुक्रम उत्पन्न करने के लिए डिज़ाइन किया गया है जो यादृच्छिक अनुक्रमों के रूप में व्यवहार करते हैं। हालाँकि, एक हार्डवेयर यादृच्छिक संख्या जनरेटर गैर-नियतात्मक हो सकता है।
अन्य
अर्थशास्त्र में, रैमसे-कैस-कोपमैन का मॉडल नियतात्मक है। स्टोकैस्टिक समतुल्य को वास्तविक व्यवसाय चक्र सिद्धांत के रूप में जाना जाता है।
यह भी देखें
संदर्भ
- ↑ deterministic system - definition at The Internet Encyclopedia of Science
- ↑ Dynamical systems at Scholarpedia