स्पिन ग्लास: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 15: Line 15:
}}
}}
{{Condensed matter physics}}
{{Condensed matter physics}}
[[संघनित पदार्थ भौतिकी]] में एक चक्रण काँच चुंबकीय स्थिति है जो यादृच्छिकता की विशेषता है। इसके अतिरिक्त 'हिमीकरण तापमान' ''टीएफ'' नामक तापमान पर चक्रण की हिमीकरण में सहकारी व्यवहार होता है।<ref name=":0">{{Cite book|last=Mydosh|first=J A|title=Spin Glasses: An Experimental Introduction|publisher=Taylor & Francis|year=1993|isbn=0748400389|id= {{isbnt|9780748400386}}|location=London, Washington DC|pages=3}}</ref> [[फेरोमैग्नेटिज्म|लौह चुम्बकीय]] ठोस में घटक परमाणुओं का चुंबकीय [[स्पिन (भौतिकी)|चक्रण (भौतिकी)]] सभी एक ही दिशा में संरेखित होते हैं। लौह-चुंबकीय के साथ विपरीत होने पर चक्रण काँच को [[एन्ट्रापी|अव्यवस्थित]] चुंबकीय स्थिति के रूप में परिभाषित किया जाता है। जिसमें चक्रण यादृच्छिक रूप से या नियमित स्वरूप के बिना संरेखित होते हैं, और युग्मन भी यादृच्छिक होते हैं।<ref name=":0" />   
[[संघनित पदार्थ भौतिकी|'''संघनित पदार्थ भौतिकी''']] में एक चक्रण काँच चुंबकीय स्थिति है जो यादृच्छिकता की विशेषता है। इसके अतिरिक्त 'हिमीकरण तापमान' ''टीएफ'' नामक तापमान पर चक्रण की हिमीकरण में सहकारी व्यवहार होता है।<ref name=":0">{{Cite book|last=Mydosh|first=J A|title=Spin Glasses: An Experimental Introduction|publisher=Taylor & Francis|year=1993|isbn=0748400389|id= {{isbnt|9780748400386}}|location=London, Washington DC|pages=3}}</ref> [[फेरोमैग्नेटिज्म|लौह चुम्बकीय]] ठोस में घटक परमाणुओं का चुंबकीय [[स्पिन (भौतिकी)|चक्रण (भौतिकी)]] सभी एक ही दिशा में संरेखित होते हैं। लौह-चुंबकीय के साथ विपरीत होने पर चक्रण काँच को [[एन्ट्रापी|अव्यवस्थित]] चुंबकीय स्थिति के रूप में परिभाषित किया जाता है। जिसमें चक्रण यादृच्छिक रूप से या नियमित स्वरूप के बिना संरेखित होते हैं, और युग्मन भी यादृच्छिक होते हैं।<ref name=":0" />   


"[[ काँच |काँच]]" शब्द एक चक्रण काँच में चुंबकीय विकार और पारंपरिक रासायनिक काँच के स्थितीय विकार के मध्य समानता से आता है। उदाहरण के रूप खिड़की के शीशे है। खिड़की के शीशे या किसी [[अनाकार ठोस|आकृतिहीन ठोस]] में परमाणु बंधन संरचना अत्यधिक अनियमित होती है। इसके विपरीत एक [[क्रिस्टल]] में परमाणु बंधों का एक समान स्वरूप होता है। [[ लौह-चुंबकीय |लौह-चुंबकीय]] ठोस में चुंबकीय चक्रण सभी एक ही दिशा में संरेखित होते हैं। यह क्रिस्टल की जाली-आधारित संरचना के अनुरूप है।
"[[ काँच |काँच]]" शब्द एक चक्रण काँच में चुंबकीय विकार और पारंपरिक रासायनिक काँच के स्थितीय विकार के मध्य समानता से आता है। उदाहरण के रूप खिड़की के शीशे है। खिड़की के शीशे या किसी [[अनाकार ठोस|आकृतिहीन ठोस]] में परमाणु बंधन संरचना अत्यधिक अनियमित होती है। इसके विपरीत एक [[क्रिस्टल]] में परमाणु बंधों का एक समान स्वरूप होता है। [[ लौह-चुंबकीय |लौह-चुंबकीय]] ठोस में चुंबकीय चक्रण सभी एक ही दिशा में संरेखित होते हैं। यह क्रिस्टल की जाली-आधारित संरचना के अनुरूप है।
Line 46: Line 46:
जहां <math>S_i</math> जाली बिंदु <math>i</math> पर अर्ध चक्रण कण के लिए [[पाउली स्पिन मैट्रिक्स|पाउली चक्रण आव्युह]] को संदर्भित करता है, और योग से अधिक <math>\langle ij\rangle</math> निकटतम जाली बिंदुओं <math>i</math> और <math>j</math> पर योग को संदर्भित करता है। <math>J_{ij}</math> का एक ऋणात्मक मान बिंदु <math>i</math> और <math>j</math> पर चक्रण के मध्य एक प्रतिलोह चुंबकीय प्रकार की परस्पर क्रिया को दिखाता है। योग किसी भी आयाम के जाली पर सभी निकटतम निकटतम स्थितियों पर चलता है। चर <math>J_{ij}</math> चक्रण-चक्रण पारस्परिक प्रभाव की चुंबकीय प्रकृति का प्रतिनिधित्व करने वाले अनुबंध या लिंक चर कसमाधानाते हैं।
जहां <math>S_i</math> जाली बिंदु <math>i</math> पर अर्ध चक्रण कण के लिए [[पाउली स्पिन मैट्रिक्स|पाउली चक्रण आव्युह]] को संदर्भित करता है, और योग से अधिक <math>\langle ij\rangle</math> निकटतम जाली बिंदुओं <math>i</math> और <math>j</math> पर योग को संदर्भित करता है। <math>J_{ij}</math> का एक ऋणात्मक मान बिंदु <math>i</math> और <math>j</math> पर चक्रण के मध्य एक प्रतिलोह चुंबकीय प्रकार की परस्पर क्रिया को दिखाता है। योग किसी भी आयाम के जाली पर सभी निकटतम निकटतम स्थितियों पर चलता है। चर <math>J_{ij}</math> चक्रण-चक्रण पारस्परिक प्रभाव की चुंबकीय प्रकृति का प्रतिनिधित्व करने वाले अनुबंध या लिंक चर कसमाधानाते हैं।


इस प्रणाली के लिए [[विभाजन समारोह (सांख्यिकीय यांत्रिकी)|विभाजन कार्य (सांख्यिकीय यांत्रिकी)]] निर्धारित करने के लिए, [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]] को औसत करने की आवश्यकता है <math>f\left[J_{ij}\right] = -\frac{1}{\beta} \ln\mathcal{Z}\left[J_{ij}\right]</math> कहाँ <math>\mathcal{Z}\left[J_{ij}\right] = \operatorname{Tr}_S \left(e^{-\beta H}\right)</math>,  
इस प्रणाली के लिए [[विभाजन समारोह (सांख्यिकीय यांत्रिकी)|विभाजन कार्य (सांख्यिकीय यांत्रिकी)]] निर्धारित करने के लिए, [[हेल्महोल्ट्ज़ मुक्त ऊर्जा]] को औसत करने की आवश्यकता है  
 
<math>f\left[J_{ij}\right] = -\frac{1}{\beta} \ln\mathcal{Z}\left[J_{ij}\right]</math> कहाँ <math>\mathcal{Z}\left[J_{ij}\right] = \operatorname{Tr}_S \left(e^{-\beta H}\right)</math>,  


<math>J_{ij}</math>. के सभी संभावित मानों पर <math>J_{ij}</math>. के मानों के वितरण को मध्य<math>J_0</math> और प्रसरण <math>J^2</math> के साथ गॉसियन माना जाता है:-
<math>J_{ij}</math>. के सभी संभावित मानों पर <math>J_{ij}</math>. के मानों के वितरण को मध्य<math>J_0</math> और प्रसरण <math>J^2</math> के साथ गॉसियन माना जाता है:-
Line 65: Line 67:


== शेरिंगटन-किर्कपैट्रिक आदर्श ==
== शेरिंगटन-किर्कपैट्रिक आदर्श ==
असामान्य प्रयोगात्मक गुणों के अतिरिक्त, चक्रण काँच व्यापक सैद्धांतिक और संगणनात्मक अन्वेषण का विषय हैं। चक्रण काँच पर प्रारंभिक सैद्धांतिक काम का एक बड़ा हिस्सा प्रणाली के विभाजन कार्य (सांख्यिकीय यांत्रिकी) की प्रतिकृतियों चाल के समुच्चय के आधार पर [[माध्य-क्षेत्र सिद्धांत|मध्य-क्षेत्र सिद्धांत]] के रूप से उपस्थित है।
असामान्य प्रयोगात्मक गुणों के अतिरिक्त, चक्रण काँच व्यापक सैद्धांतिक और संगणनात्मक अन्वेषण का विषय हैं। चक्रण काँच पर प्रारंभिक सैद्धांतिक काम का एक बड़ा भाग प्रणाली के विभाजन कार्य (सांख्यिकीय यांत्रिकी) की प्रतिकृतियों चाल के समुच्चय के आधार पर [[माध्य-क्षेत्र सिद्धांत|मध्य-क्षेत्र सिद्धांत]] के रूप से उपस्थित है।


1975 में [[डेविड Sherrington (भौतिक विज्ञानी)|डेविड शेरिंगटन (भौतिक विज्ञानी)]] और [[स्कॉट किर्कपैट्रिक]] के माध्यम से चक्रण काँच का एक महत्वपूर्ण, स्पष्ट रूप से समाधान करने योग्य आदर्श प्रस्तुत किया गया था। यह लंबी दूरी के कुंठित चक्रों के साथ-साथ प्रतिलोह चुंबकीय युग्मन वाला एक ईज़िंग आदर्श है। यह चुंबकीयकरण की धीमी गतिशीलता और जटिल अ-कार्यात्मक संतुलन स्थिति का वर्णन करने वाले चक्रण काँच के औसत-क्षेत्र सन्निकटन से मेल खाती है।
1975 में [[डेविड Sherrington (भौतिक विज्ञानी)|डेविड शेरिंगटन (भौतिक विज्ञानी)]] और [[स्कॉट किर्कपैट्रिक]] के माध्यम से चक्रण काँच का एक महत्वपूर्ण, स्पष्ट रूप से समाधान करने योग्य आदर्श प्रस्तुत किया गया था। यह लंबी दूरी के कुंठित चक्रों के साथ-साथ प्रतिलोह चुंबकीय युग्मन वाला एक ईज़िंग आदर्श है। यह चुंबकीयकरण की धीमी गतिशीलता और जटिल अ-कार्यात्मक संतुलन स्थिति का वर्णन करने वाले चक्रण काँच के औसत-क्षेत्र सन्निकटन से मेल खाती है।
Line 95: Line 97:
               &\int \exp\left(-\frac{1}{2}z^2\right) \log\left(2\cosh\left(\beta Jz \sqrt{\frac{1}{2}rq^{r-1}} + \frac{1}{2}\beta J_0 r m^{r-1}\right)\right)\, \mathrm{d}z
               &\int \exp\left(-\frac{1}{2}z^2\right) \log\left(2\cosh\left(\beta Jz \sqrt{\frac{1}{2}rq^{r-1}} + \frac{1}{2}\beta J_0 r m^{r-1}\right)\right)\, \mathrm{d}z
\end{align}</math>
\end{align}</math>


== अ-कार्यात्मक व्यवहार और अनुप्रयोग ==
== अ-कार्यात्मक व्यवहार और अनुप्रयोग ==
Line 105: Line 106:


2020 में, रेडबौड विश्वविद्यालय और [[उप्साला विश्वविद्यालय]] के भौतिकी शोधकर्ताओं ने घोषणा की कि उन्होंने नियोडिमियम की परमाणु संरचना में स्व-प्रेरित चक्रण काँच के रूप में जाना जाने वाला एक व्यवहार देखा है। शोधकर्ताओं में से एक ने समझाया, कि हम [[स्कैनिंग टनलिंग माइक्रोस्कोप|अवलोकन गहराइ सूक्ष्मदर्शिकी]] को अवलोकन करने के विशेषज्ञ हैं। यह हमें भिन्न-भिन्न परमाणुओं की संरचना को देखने की अनुमति दी जाती है तो, हम परमाणुओं के उत्तरी और दक्षिणी ध्रुवों को समाधान कर सकते हैं। उच्च-परिशुद्धता इमेजिंग में इस प्रगति के साथ, हम नियोडिमियम में व्यवहार की अन्वेषण करने में सक्षम थे, क्योंकि हम चुंबकीय संरचना में अविश्वसनीय रूप से छोटे परिवर्तनों को समाधान कर सकते थे। नियोडिमियम एक जटिल चुंबकीय विधियों से व्यवहार करता है, जिसे आवर्त सारणी तत्व में पसमाधाने नहीं देखा गया था।<ref name=sciencemag>{{cite magazine|title=तात्विक और क्रिस्टलीय नियोडिमियम में स्व-प्रेरित स्पिन ग्लास अवस्था|author1=Umut Kamber |author2=Anders Bergman |author3=Andreas Eich |author4=Diana Iuşan |author5=Manuel Steinbrecher |author6=Nadine Hauptmann |author7=Lars Nordström |author8=Mikhail I. Katsnelson |author9=Daniel Wegner |author10=Olle Eriksson |author11=Alexander A. Khajetoorians|journal=Science |date=May 29, 2020 |volume=368 |issue=6494 |doi=10.1126/science.aay6757 |access-date=29 May 2020 |url=https://www.science.org/doi/10.1126/science.aay6757 }}</ref><ref name=scitechdaily>{{cite web|title=New 'Whirling' State of Matter Discovered: Self-Induced Spin Glass |author=Radboud University Nijmegen|date=May 28, 2020 |access-date=29 May 2020 |url=https://scitechdaily.com/new-whirling-state-of-matter-discovered-self-induced-spin-glass/ }}</ref>
2020 में, रेडबौड विश्वविद्यालय और [[उप्साला विश्वविद्यालय]] के भौतिकी शोधकर्ताओं ने घोषणा की कि उन्होंने नियोडिमियम की परमाणु संरचना में स्व-प्रेरित चक्रण काँच के रूप में जाना जाने वाला एक व्यवहार देखा है। शोधकर्ताओं में से एक ने समझाया, कि हम [[स्कैनिंग टनलिंग माइक्रोस्कोप|अवलोकन गहराइ सूक्ष्मदर्शिकी]] को अवलोकन करने के विशेषज्ञ हैं। यह हमें भिन्न-भिन्न परमाणुओं की संरचना को देखने की अनुमति दी जाती है तो, हम परमाणुओं के उत्तरी और दक्षिणी ध्रुवों को समाधान कर सकते हैं। उच्च-परिशुद्धता इमेजिंग में इस प्रगति के साथ, हम नियोडिमियम में व्यवहार की अन्वेषण करने में सक्षम थे, क्योंकि हम चुंबकीय संरचना में अविश्वसनीय रूप से छोटे परिवर्तनों को समाधान कर सकते थे। नियोडिमियम एक जटिल चुंबकीय विधियों से व्यवहार करता है, जिसे आवर्त सारणी तत्व में पसमाधाने नहीं देखा गया था।<ref name=sciencemag>{{cite magazine|title=तात्विक और क्रिस्टलीय नियोडिमियम में स्व-प्रेरित स्पिन ग्लास अवस्था|author1=Umut Kamber |author2=Anders Bergman |author3=Andreas Eich |author4=Diana Iuşan |author5=Manuel Steinbrecher |author6=Nadine Hauptmann |author7=Lars Nordström |author8=Mikhail I. Katsnelson |author9=Daniel Wegner |author10=Olle Eriksson |author11=Alexander A. Khajetoorians|journal=Science |date=May 29, 2020 |volume=368 |issue=6494 |doi=10.1126/science.aay6757 |access-date=29 May 2020 |url=https://www.science.org/doi/10.1126/science.aay6757 }}</ref><ref name=scitechdaily>{{cite web|title=New 'Whirling' State of Matter Discovered: Self-Induced Spin Glass |author=Radboud University Nijmegen|date=May 28, 2020 |access-date=29 May 2020 |url=https://scitechdaily.com/new-whirling-state-of-matter-discovered-self-induced-spin-glass/ }}</ref>
== क्षेत्र का इतिहास ==
== क्षेत्र का इतिहास ==


Line 177: Line 176:
==टिप्पणियाँ==
==टिप्पणियाँ==
{{Reflist|group="note"}}
{{Reflist|group="note"}}


==संदर्भ==
==संदर्भ==

Revision as of 15:13, 21 June 2023

एक चक्रण काँच (शीर्ष) की यादृच्छिक चक्रण संरचना का योजनाबद्ध प्रतिनिधित्व और एक लौह-चुंबकीय (नीचे) का आदेश दिया
कांच (आकृतिहीन SiO2)
स्फटिक (क्रिस्टल रेखा SiO2)
लोह चुंबकीय की अपेक्षा में चक्रण कांच का चुंबकीय विकार स्फटिक (दाएं) की तुलना में कांच (बाएं) की स्थितीय विकार के अनुरूप है।

संघनित पदार्थ भौतिकी में एक चक्रण काँच चुंबकीय स्थिति है जो यादृच्छिकता की विशेषता है। इसके अतिरिक्त 'हिमीकरण तापमान' टीएफ नामक तापमान पर चक्रण की हिमीकरण में सहकारी व्यवहार होता है।[1] लौह चुम्बकीय ठोस में घटक परमाणुओं का चुंबकीय चक्रण (भौतिकी) सभी एक ही दिशा में संरेखित होते हैं। लौह-चुंबकीय के साथ विपरीत होने पर चक्रण काँच को अव्यवस्थित चुंबकीय स्थिति के रूप में परिभाषित किया जाता है। जिसमें चक्रण यादृच्छिक रूप से या नियमित स्वरूप के बिना संरेखित होते हैं, और युग्मन भी यादृच्छिक होते हैं।[1]

"काँच" शब्द एक चक्रण काँच में चुंबकीय विकार और पारंपरिक रासायनिक काँच के स्थितीय विकार के मध्य समानता से आता है। उदाहरण के रूप खिड़की के शीशे है। खिड़की के शीशे या किसी आकृतिहीन ठोस में परमाणु बंधन संरचना अत्यधिक अनियमित होती है। इसके विपरीत एक क्रिस्टल में परमाणु बंधों का एक समान स्वरूप होता है। लौह-चुंबकीय ठोस में चुंबकीय चक्रण सभी एक ही दिशा में संरेखित होते हैं। यह क्रिस्टल की जाली-आधारित संरचना के अनुरूप है।

एक चक्रण काँच में भिन्न-भिन्न परमाणु बंधन लगभग समान संख्या में लौह-चुंबकीय अनुबंध (जहां निकटतम का एक ही अभिविन्यास है) और प्रतिलोह-चुंबकीय अनुबंध (जहां निकटतम का वास्तव में विपरीत अभिविन्यास होता है एवं उत्तर और दक्षिण ध्रुव 180 डिग्री अनियंत्रित होते हैं) का मिश्रण होते हैं। संरेखित और असंरेखित परमाणु चुम्बकों के ये स्वरूप नियमित रूप से पूरी तरह से संरेखित ठोस में दिखाई देने वाली चीज़ों की अनुपात में परमाणु अनुबंधों की ज्यामिति में कुंठित अंतःक्रियात्मक विकृतियों के रूप में जाने जाते हैं। वे ऐसी परिस्थितियाँ भी बना सकते हैं, जहाँ परमाणुओं की एक से अधिक ज्यामितीय व्यवस्था स्थिर हो।

चक्रण कांच और उनके अन्दर उत्पन्न होने वाली जटिल आंतरिक संरचनाओं को "मितस्थायित्व" कहा जाता है़, क्योंकि वे सबसे कम ऊर्जा विन्यास (जो संरेखित और फेरोमैग्नेटिक होंगे) के अतिरिक्त स्थिर विन्यास में "प्रगृहीत" हो जाते हैं। इन संरचनाओं की गणितीय जटिलता कठिन है, किन्तु कंप्यूटर विज्ञान में भौतिकी, रसायन विज्ञान, सामग्री विज्ञान और कृत्रिम तंत्रिका समूह के अनुप्रयोगों के साथ प्रयोगात्मक रूप से या अनुकरण में अध्ययन करने के लिए उपयोगी है।

चुंबकीय व्यवहार

यह समय की निर्भरता है, जो चक्रण काँच को अन्य चुंबकीय प्रणालियों से प्रथक करती है।

चक्रण कांच परिवर्तनकाल तापमान Tc के ऊपर चक्रण काँच विशिष्ट चुंबकीय व्यवहार (जैसे अनुचुंबकत्व) प्रदर्शित करता है।

यदि एक अनुप्रयुक्त चुंबकीय क्षेत्र प्रयुक्त किया जाता है, क्योंकि नमूने को परिवर्तन तापमान तक ठंडा किया जाता है, तो क्यूरी के नियम के माध्यम से वर्णित नमूने का चुंबकीयकरण बढ़ जाता है। Tc तक पहुँचने पर, नमूना एक चक्रण काँच बन जाता है और आगे के ठंडा करने के परिणामस्वरूप चुंबकत्व में थोड़ा परिवर्तन होता है। इसे क्षेत्र-शीतलक चुंबकीकरण कहा जाता है।

जब बाहरी चुंबकीय क्षेत्र को हटा दिया जाता है, तो चक्रण काँच का चुंबकीयकरण शीघ्रता से कम महत्व पर गिर जाता है। जिसे अवशेष चुंबकीयकरण के रूप में जाना जाता है।

चुंबकत्व तब धीरे-धीरे कम हो जाता है, क्योंकि यह शून्य (या मूल महत्व के कुछ छोटे अंश-भौतिक विज्ञान में अवशेष रहता है) तक पहुंचता है। यह घातीय क्षय अ-घातीय है, और कोई साधारण कार्य चुंबकत्व के विरूद्ध समय के वक्र को पर्याप्त रूप से उपयुक्त नहीं कर सकता है।[2] यह धीमा क्षय विशेष रूप से कांच घुमाने के लिए है। दिनों के क्रम पर प्रायोगिक मापों ने उपकरण के ध्वनि स्तर के ऊपर नित्य परिवर्तन दिखाया है।[2]

चक्रण काँच लौह-चुंबकीय सामग्री से इस तथ्य से भिन्न होते हैं, कि बाहरी चुंबकीय क्षेत्र को लौह-चुंबकीय पदार्थ से हटा दिए जाने के बाद चुंबकीकरण अवशेष महत्व पर अनिश्चित काल तक बना रहता है। समचुंबक सामग्री चक्रण काँच से इस तथ्य से भिन्न होती है कि, बाहरी चुंबकीय क्षेत्र को हटा दिए जाने के बाद, चुंबकीयकरण शीघ्रता से शून्य हो जाता है। जिसमें कोई अवशेष चुंबकीयकरण नहीं होता है। यह क्षय तीव्र और घातीय है।

यदि बाहरी चुंबकीय क्षेत्र की अनुपस्थिति में नमूने को Tc से नीचे ठंडा किया जाता है, और चक्रण काँच चरण में परिवर्तन के बाद एक चुंबकीय क्षेत्र लगाया जाता है, तो शून्य-क्षेत्र-ठंडा चुंबकत्व नामक महत्व में शीघ्रता से प्रारंभिक वृद्धि होती है। धीमी गति से ऊपर की ओर बहाव तब क्षेत्र-शीतलक चुंबकीकरण की ओर होता है।

आश्चर्यजनक रूप से, समय के दो जटिल कार्यों का योग (शून्य-क्षेत्र-ठंडा और अवशेष चुंबकीकरण) स्थिर है, जिसका नाम क्षेत्र-ठंडा मान है और इस प्रकार दोनों समय के साथ समान कार्यात्मक रूपों को साझा करते हैं [3] अर्थात कम से कम बहुत छोटे बाहरी क्षेत्रों की सीमा में है।

एडवर्ड्स-एंडरसन आदर्श

इस आदर्श में, हमारे पास आइसिंग आदर्श के समान केवल निकटतम पारस्परिक प्रभाव के साथ विमितीय जाली पर व्यवस्थित चक्रण हैं। इस आदर्श को स्पष्ट रूप से महत्वपूर्ण तापमान के लिए समाधान किया जा सकता है, और कम तापमान पर एक शीशे का चरण देखा जाता है।[3] इस चक्रण प्रणाली के लिए हैमिल्टनियन यांत्रिकी के माध्यम से निम्म रूप दिया गया है:-

जहां जाली बिंदु पर अर्ध चक्रण कण के लिए पाउली चक्रण आव्युह को संदर्भित करता है, और योग से अधिक निकटतम जाली बिंदुओं और पर योग को संदर्भित करता है। का एक ऋणात्मक मान बिंदु और पर चक्रण के मध्य एक प्रतिलोह चुंबकीय प्रकार की परस्पर क्रिया को दिखाता है। योग किसी भी आयाम के जाली पर सभी निकटतम निकटतम स्थितियों पर चलता है। चर चक्रण-चक्रण पारस्परिक प्रभाव की चुंबकीय प्रकृति का प्रतिनिधित्व करने वाले अनुबंध या लिंक चर कसमाधानाते हैं।

इस प्रणाली के लिए विभाजन कार्य (सांख्यिकीय यांत्रिकी) निर्धारित करने के लिए, हेल्महोल्ट्ज़ मुक्त ऊर्जा को औसत करने की आवश्यकता है

कहाँ ,

. के सभी संभावित मानों पर . के मानों के वितरण को मध्य और प्रसरण के साथ गॉसियन माना जाता है:-

एक निश्चित तापमान के नीचे, प्रतिकृति चाल का उपयोग करके मुक्त ऊर्जा के लिए समाधान, नया चुंबकीय चरण जिसे प्रणाली का चक्रण काँच चरण (या काँची चरण) कहा जाता है, उपस्थित पाया जाता है, जो एक अन्य के साथ लुप्त होने वाले चुंबकीयकरण की विशेषता है। एक ही जाली बिंदु पर दो भिन्न-भिन्न प्रतिकृतियों पर चक्रण के मध्य दो बिंदु सहसंबंध कार्य का लुप्त महत्व:-

कहाँ प्रतिकृति सूचकांक हैं। लौह-चुंबकीय टू चक्रण काँच अवस्था परिवर्तन के लिए आदेश पैरामीटर इसलिए है, और यह कि समचुंबक से चक्रण काँच फिर से आदेश पैरामीटर है। इसलिए तीन चुंबकीय चरणों का वर्णन करने वाले ऑर्डर पैरामीटर के नए समुच्चय में और दोनों सम्मिलित हैं।

प्रतिकृति समरूपता की धारणा के अनुसार, मध्य-क्षेत्र मुक्त ऊर्जा अभिव्यक्ति के माध्यम से दी गई है:-[3]


शेरिंगटन-किर्कपैट्रिक आदर्श

असामान्य प्रयोगात्मक गुणों के अतिरिक्त, चक्रण काँच व्यापक सैद्धांतिक और संगणनात्मक अन्वेषण का विषय हैं। चक्रण काँच पर प्रारंभिक सैद्धांतिक काम का एक बड़ा भाग प्रणाली के विभाजन कार्य (सांख्यिकीय यांत्रिकी) की प्रतिकृतियों चाल के समुच्चय के आधार पर मध्य-क्षेत्र सिद्धांत के रूप से उपस्थित है।

1975 में डेविड शेरिंगटन (भौतिक विज्ञानी) और स्कॉट किर्कपैट्रिक के माध्यम से चक्रण काँच का एक महत्वपूर्ण, स्पष्ट रूप से समाधान करने योग्य आदर्श प्रस्तुत किया गया था। यह लंबी दूरी के कुंठित चक्रों के साथ-साथ प्रतिलोह चुंबकीय युग्मन वाला एक ईज़िंग आदर्श है। यह चुंबकीयकरण की धीमी गतिशीलता और जटिल अ-कार्यात्मक संतुलन स्थिति का वर्णन करने वाले चक्रण काँच के औसत-क्षेत्र सन्निकटन से मेल खाती है।

एडवर्ड्स-एंडरसन (ईए) आदर्श के विपरीत, प्रणाली में चूंकि केवल दो-चक्रण पारस्परिक प्रभाव पर विचार किया जाता है। प्रत्येक पारस्परिक प्रभाव की सीमा (जाली के आकार के क्रम में) संभावित रूप से अनंत हो सकती है। इसलिए, हम देखते हैं कि किसी भी दो चक्रण को लौह-चुंबकीय या प्रतिलोह चुंबकीय अनुबंध से जोड़ा जा सकता है, और इनका वितरण ठीक उसी तरह दिया जाता है। जैसा एडवर्ड्स-एंडरसन आदर्श के स्थितियों में होता है। एसके आदर्श के लिए हैमिल्टनियन ईए आदर्श के समान है:-

कहाँ का वही अर्थ है जो ईए आदर्श में हैं। आदर्श का संतुलन समाधान शेरिंगटन किर्कपैट्रिक और अन्य के कुछ प्रारंभिक प्रयासों के बाद, 1979 में जियोर्जियो पैरिसी के माध्यम से प्रतिकृति विधि के साथ पाया गया है। एम. मेजार्ड, जी. पारसी, एमए विरासोरो और कई अन्य लोगों के माध्यम से पैरिसी समाधान की व्याख्या के बाद के कार्य ने कांच के समान कम तापमान वाले चरण की जटिल प्रकृति को प्रकट किया, जो कि अभ्यतिप्रायता विघात, अल्ट्रामैट्रिकिटी और अ-स्वऔसतता की विशेषता है। आगे की घटनाओं ने कोष्ठ पद्धति का निर्माण किया, जिसने प्रतिकृतियों के बिना निम्न तापमान चरण के अध्ययन की अनुमति दी। फ्रांसेस्को गुएरा और मिशेल तालग्रैंड के काम में पैरिसी समाधान का एक कठोर प्रमाण प्रदान किया गया है।[4] प्रतिकृति मध्य-क्षेत्र सिद्धांत की औपचारिकता को तंत्रिका नेटवर्क के अध्ययन में भी प्रयुक्त किया गया है, जहां इसने गुणों की गणना को सक्षम किया है़, जैसे कि सरल तंत्रिका नेटवर्क स्थापत्य की भंडारण क्षमता बिना प्रशिक्षण एल्गोरिदम (जैसे पश्च प्रसारण) को रचना या कार्यान्वित करने की आवश्यकता के बिना ही।[5] गॉसियन आदर्श की तरह कम सीमा असंतुष्ट पारस्परिक प्रभाव और अव्यवस्था के साथ अधिक यथार्थवादी चक्रण काँच आदर्श, जहां निकटतम चक्रण के मध्य युग्मन गॉसियन वितरण का अनुसरण करते हैं, विशेष रूप से मोंटे कार्लो अनुकरण का उपयोग करते हुए बड़े मापदंड पर अध्ययन किया गया है। ये आदर्श तेज चरण परिवर्तन से घिरे चक्रण काँच चरणों को प्रदर्शित करते हैं।

संघनित पदार्थ भौतिकी में इसकी प्रासंगिकता के अतिरिक्त, चक्रण काँच सिद्धांत ने तंत्रिका नेटवर्क सिद्धांत, कंप्यूटर विज्ञान, सैद्धांतिक जीव विज्ञान, अर्थभौतिकी आदि के अनुप्रयोगों के साथ दृढ़ता से अंतःविषय चरित्र प्राप्त कर लिया है।

अनंत-श्रेणी आदर्श

अनंत-श्रेणी आदर्श शेरिंगटन-किर्कपैट्रिक आदर्श का सामान्यीकरण है, जहां हम न केवल दो चक्रण पारस्परिक प्रभाव पर विचार करते हैं किन्तु -चक्रण पारस्परिक प्रभाव, जहां और घुमावों की कुल संख्या है। एडवर्ड्स-एंडरसन आदर्श के विपरीत और एसके आदर्श के समान जहां पारस्परिक प्रभाव सीमा अभी भी अनंत है। इस आदर्श के लिए हैमिल्टनियन के माध्यम से वर्णित है:-

कहाँ ईए आदर्श के समान अर्थ हैं। इस h> आदर्श की सीमा को यादृच्छिक ऊर्जा आदर्श के रूप में जाना जाता है। इस सीमा में, यह देखा जा सकता है कि किसी विशेष अवस्था में उपस्थित चक्रण काँच की संभावना केवल उस क्षेत्र की ऊर्जा पर निर्भर करती है, न कि उसमें भिन्न-भिन्न चक्रण विन्यास पर निर्भर करती है। इस आदर्श को समाधान करने के लिए सामान्यतः जाली के पार चुंबकीय बंधनों का गॉसियन वितरण माना जाता है। केंद्रीय सीमा प्रमेय के परिणाम के रूप में किसी अन्य वितरण से समान परिणाम देने की अपेक्षित है। मध्य के और प्रसरण , के साथ गॉसियन वितरण फलन इस प्रकार दिया गया है:-

इस प्रणाली के लिए आदेश पैरामीटर चुंबकीयकरण के माध्यम से दिए गए हैं और दो भिन्न-भिन्न प्रतिकृतियों में एक ही स्थान पर चक्रण के मध्य दो बिंदु चक्रण सहसंबंध, जो एसके प्रतिरूप के समान हैं। प्रतिकृति समरूपता के साथ-साथ-साथ प्रतिकृति समरूपता तोड़ना की धारणा के अनुसार, यह अनंत सीमा प्रतिरूप और के संदर्भ में मुक्त ऊर्जा के लिए स्पष्ट रूप से समाधान किया जा सकता है।[3]

अ-कार्यात्मक व्यवहार और अनुप्रयोग

एक ऊष्मा गतिक प्रणाली अ-कार्यात्मक है, जब प्रणाली के किसी भी (संतुलन) उदाहरण को देखते हुए, यह अंततः हर दूसरे संभव (संतुलन) क्षेत्र (समान ऊर्जा का) पर जाता है। चक्रण काँच प्रणाली की एक विशेषता यह है, कि ठंड तापमान के नीचे उदाहरण क्षेत्रों के अ-कार्यात्मक समुच्चय में प्रगृहीत हुए हैं। प्रणाली कई क्षेत्रों के मध्य उतार-चढ़ाव कर सकता है, किन्तु समतुल्य ऊर्जा के अन्य क्षेत्रों में परिवर्तन नहीं कर सकता है। अतः सहज रूप से, कोई कह सकता है कि प्रणाली पदानुक्रमित अव्यवस्थित ऊर्जा परिदृश्य की गहन न्यूनतमता से बच नहीं सकता है। न्यूनतमता के मध्य की दूरी अल्ट्रामेट्रिक के माध्यम से दी जाती है, जिसमें न्यूनतमता के मध्य लंबे ऊर्जा अवरोध होते हैं। भागीदारी अनुपात उन क्षेत्रों की संख्या की गणना करता है, जो किसी दिए गए उदाहरण से पहुंच योग्य हैं, अर्थात आधार क्षेत्र में भाग लेने वाले क्षेत्रों की संख्या है। चक्रण काँच के कार्यात्मक सवरूप ने जियोर्जियो पैरिसी को 2021 का आधा भौतिकी का नोबेल पुरस्कार प्रदान करने में महत्वपूर्ण भूमिका निभाई थी।[6][7][8]

भौतिक प्रणालियों के लिए, जैसे तांबे में पतला मैंगनीज, ठंड का तापमान सामान्यतः 30 केल्विन (-240 डिग्री सेल्सियस) जितना कम होता है, और इसलिए चक्रण-काँच चुंबकत्व व्यावहारिक रूप से दैनिक जीवन में अनुप्रयोगों के बिना प्रतीत होता है। चूंकि, अ-कार्यात्मक क्षेत्र और अशिष्ट ऊर्जा परिदृश्य, गति क्षेत्र नेटवर्क सहित कुछ तंत्रिका नेटवर्क के व्यवहार को समझने में अधिक उपयोगी हैं, साथ ही साथ कंप्यूटर विज्ञान अनुकूलन (गणित) और आनुवंशिकी में कई समस्याएं सम्मिलित हैं।

स्व-प्रेरित चक्रण काँच

2020 में, रेडबौड विश्वविद्यालय और उप्साला विश्वविद्यालय के भौतिकी शोधकर्ताओं ने घोषणा की कि उन्होंने नियोडिमियम की परमाणु संरचना में स्व-प्रेरित चक्रण काँच के रूप में जाना जाने वाला एक व्यवहार देखा है। शोधकर्ताओं में से एक ने समझाया, कि हम अवलोकन गहराइ सूक्ष्मदर्शिकी को अवलोकन करने के विशेषज्ञ हैं। यह हमें भिन्न-भिन्न परमाणुओं की संरचना को देखने की अनुमति दी जाती है तो, हम परमाणुओं के उत्तरी और दक्षिणी ध्रुवों को समाधान कर सकते हैं। उच्च-परिशुद्धता इमेजिंग में इस प्रगति के साथ, हम नियोडिमियम में व्यवहार की अन्वेषण करने में सक्षम थे, क्योंकि हम चुंबकीय संरचना में अविश्वसनीय रूप से छोटे परिवर्तनों को समाधान कर सकते थे। नियोडिमियम एक जटिल चुंबकीय विधियों से व्यवहार करता है, जिसे आवर्त सारणी तत्व में पसमाधाने नहीं देखा गया था।[9][10]

क्षेत्र का इतिहास

1960 के दशक के प्रारंभ से 1980 के दशक के अंत तक चक्रण काँच के इतिहास का विस्तृत विवरण फ़िलिप वॉरेन एंडरसन के माध्यम से फ़िज़िक्स टुडे मे लोकप्रिय लेखों की एक श्रृंखला में पाया जा सकता है।[11][12][13][14][15][16][17]

यह भी देखें

टिप्पणियाँ

संदर्भ

  1. 1.0 1.1 Mydosh, J A (1993). Spin Glasses: An Experimental Introduction. London, Washington DC: Taylor & Francis. p. 3. ISBN 0748400389. 9780748400386.
  2. 2.0 2.1 Joy, P A; Kumar, P S Anil; Date, S K (7 October 1998). "कुछ आदेशित चुंबकीय प्रणालियों की फ़ील्ड-कूल्ड और शून्य-फ़ील्ड-कूल्ड संवेदनशीलता के बीच संबंध". J. Phys.: Condens. Matter. 10 (48): 11049–11054. Bibcode:1998JPCM...1011049J. doi:10.1088/0953-8984/10/48/024. S2CID 250734239.
  3. 3.0 3.1 3.2 Nishimori, Hidetoshi (2001). Statistical Physics of Spin Glasses and Information Processing: An Introduction. Oxford: Oxford University Press. p. 243. ISBN 9780198509400.
  4. Michel Talagrand, Mean Field Models for Spin Glasses Volume I: Basic Examples (2010)
  5. Gardner, E; Deridda, B (7 January 1988). "तंत्रिका नेटवर्क मॉडल के इष्टतम भंडारण गुण" (PDF). J. Phys. A. 21 (1): 271. Bibcode:1988JPhA...21..271G. doi:10.1088/0305-4470/21/1/031.
  6. (cf unknown, unnamed)-sykuro-manabe-klaus-hasselmann-giorgio-parisi-win-climate "वैज्ञानिकों की तिकड़ी (cf अज्ञात, अनाम) ने जलवायु कार्य के लिए भौतिकी का नोबेल पुरस्कार जीता". the Guardian. October 5, 2021. {{cite web}}: Check |url= value (help)
  7. "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2021-10-05. Retrieved 2021-10-05.
  8. https://www.nobelprize.org/uploads/2021/10/sciback_fy_en_21.pdf[bare URL PDF]
  9. Umut Kamber; Anders Bergman; Andreas Eich; Diana Iuşan; Manuel Steinbrecher; Nadine Hauptmann; Lars Nordström; Mikhail I. Katsnelson; Daniel Wegner; Olle Eriksson; Alexander A. Khajetoorians (May 29, 2020). "तात्विक और क्रिस्टलीय नियोडिमियम में स्व-प्रेरित स्पिन ग्लास अवस्था". Science. Vol. 368, no. 6494. doi:10.1126/science.aay6757. Retrieved 29 May 2020.
  10. Radboud University Nijmegen (May 28, 2020). "New 'Whirling' State of Matter Discovered: Self-Induced Spin Glass". Retrieved 29 May 2020.
  11. Philip W. Anderson (1988). "Spin Glass I: A Scaling Law Rescued" (PDF). Physics Today. 41 (1): 9–11. Bibcode:1988PhT....41a...9A. doi:10.1063/1.2811268.
  12. Philip W. Anderson (1988). "Spin Glass II: Is There a Phase Transition?" (PDF). Physics Today. 41 (3): 9. Bibcode:1988PhT....41c...9A. doi:10.1063/1.2811336.
  13. Philip W. Anderson (1988). "Spin Glass III: Theory Raises its Head" (PDF). Physics Today. 41 (6): 9–11. Bibcode:1988PhT....41f...9A. doi:10.1063/1.2811440.
  14. Philip W. Anderson (1988). "Spin Glass IV: Glimmerings of Trouble" (PDF). Physics Today. 41 (9): 9–11. Bibcode:1988PhT....41i...9A. doi:10.1063/1.881135.
  15. Philip W. Anderson (1989). "Spin Glass V: Real Power Brought to Bear" (PDF). Physics Today. 42 (7): 9–11. Bibcode:1989PhT....42g...9A. doi:10.1063/1.2811073.
  16. Philip W. Anderson (1989). "Spin Glass VI: Spin Glass As Cornucopia" (PDF). Physics Today. 42 (9): 9–11. Bibcode:1989PhT....42i...9A. doi:10.1063/1.2811137.
  17. Philip W. Anderson (1990). "Spin Glass VII: Spin Glass as Paradigm" (PDF). Physics Today. 43 (3): 9–11. Bibcode:1990PhT....43c...9A. doi:10.1063/1.2810479.


साहित्य

बाहरी संबंध