रॉबिन्स बीजगणित: Difference between revisions

From Vigyanwiki
(Created page with "{{no footnotes|date=June 2015}} अमूर्त बीजगणित में, रॉबिंस बीजगणित एक सार्वभौमिक बी...")
 
No edit summary
Line 1: Line 1:
{{no footnotes|date=June 2015}}
[[अमूर्त बीजगणित]] में, रॉबिंस बीजगणित सार्वभौमिक बीजगणित # मूल विचार है जिसमें एकल [[बाइनरी ऑपरेशन]] होता है, जिसे आमतौर पर द्वारा दर्शाया जाता है <math>\lor</math>, और एकल [[यूनरी ऑपरेशन]] आमतौर पर द्वारा दर्शाया जाता है <math>\neg</math>. ये ऑपरेशन निम्नलिखित सार्वभौमिक बीजगणित#समीकरण को संतुष्ट करते हैं:
[[अमूर्त बीजगणित]] में, रॉबिंस बीजगणित एक सार्वभौमिक बीजगणित # मूल विचार है जिसमें एकल [[बाइनरी ऑपरेशन]] होता है, जिसे आमतौर पर द्वारा दर्शाया जाता है <math>\lor</math>, और एक एकल [[यूनरी ऑपरेशन]] आमतौर पर द्वारा दर्शाया जाता है <math>\neg</math>. ये ऑपरेशन निम्नलिखित सार्वभौमिक बीजगणित#समीकरण को संतुष्ट करते हैं:


सभी तत्वों ए, बी और सी के लिए:
सभी तत्वों ए, बी और सी के लिए:
Line 8: Line 7:
कई वर्षों तक, यह अनुमान लगाया गया था, लेकिन अप्रमाणित, कि सभी रॉबिन्स बीजगणित [[बूलियन बीजगणित (संरचना)]] हैं। यह 1996 में सिद्ध हो गया था, इसलिए रॉबिन्स बीजगणित शब्द अब केवल बूलियन बीजगणित का पर्याय बन गया है।
कई वर्षों तक, यह अनुमान लगाया गया था, लेकिन अप्रमाणित, कि सभी रॉबिन्स बीजगणित [[बूलियन बीजगणित (संरचना)]] हैं। यह 1996 में सिद्ध हो गया था, इसलिए रॉबिन्स बीजगणित शब्द अब केवल बूलियन बीजगणित का पर्याय बन गया है।


==इतिहास<!--'Robbins conjecture' redirects here-->==
==इतिहास==
1933 में, [[ एडवर्ड हटिंगटन ]] ने बूलियन बीजगणित के लिए स्वयंसिद्धों का एक नया सेट प्रस्तावित किया, जिसमें उपरोक्त (1) और (2) के अलावा:
1933 में, [[ एडवर्ड हटिंगटन ]] ने बूलियन बीजगणित के लिए स्वयंसिद्धों का नया सेट प्रस्तावित किया, जिसमें उपरोक्त (1) और (2) के अलावा:
*हंटिंगटन का समीकरण: <math>\neg(\neg a \lor b) \lor \neg(\neg a \lor \neg b) = a.</math>
*हंटिंगटन का समीकरण: <math>\neg(\neg a \lor b) \lor \neg(\neg a \lor \neg b) = a.</math>
इन स्वयंसिद्धों से, हंटिंगटन ने बूलियन बीजगणित के सामान्य स्वयंसिद्धों को प्राप्त किया।
इन स्वयंसिद्धों से, हंटिंगटन ने बूलियन बीजगणित के सामान्य स्वयंसिद्धों को प्राप्त किया।


इसके तुरंत बाद, [[हर्बर्ट रॉबिंस]] ने रॉबिंस अनुमान प्रस्तुत किया<!--boldface per WP:R#PLA-->, अर्थात् हंटिंगटन समीकरण को रॉबिन्स समीकरण कहे जाने वाले समीकरण से बदला जा सकता है, और परिणाम अभी भी बूलियन बीजगणित (संरचना) होगा। <math>\lor</math> बूलियन बूलियन बीजगणित (संरचना)#परिभाषा और की व्याख्या करेगा <math>\neg</math> बूलियन बूलियन बीजगणित (संरचना)#परिभाषा। बूलियन बूलियन बीजगणित (संरचना)#परिभाषा और स्थिरांक 0 और 1 को रॉबिन्स बीजगणित आदिम से आसानी से परिभाषित किया जाता है। अनुमान के सत्यापन तक, रॉबिन्स की प्रणाली को रॉबिन्स बीजगणित कहा गया।
इसके तुरंत बाद, [[हर्बर्ट रॉबिंस]] ने रॉबिंस अनुमान प्रस्तुत किया, अर्थात् हंटिंगटन समीकरण को रॉबिन्स समीकरण कहे जाने वाले समीकरण से बदला जा सकता है, और परिणाम अभी भी बूलियन बीजगणित (संरचना) होगा। <math>\lor</math> बूलियन बूलियन बीजगणित (संरचना)#परिभाषा और की व्याख्या करेगा <math>\neg</math> बूलियन बूलियन बीजगणित (संरचना)#परिभाषा। बूलियन बूलियन बीजगणित (संरचना)#परिभाषा और स्थिरांक 0 और 1 को रॉबिन्स बीजगणित आदिम से आसानी से परिभाषित किया जाता है। अनुमान के सत्यापन तक, रॉबिन्स की प्रणाली को रॉबिन्स बीजगणित कहा गया।


रॉबिंस अनुमान को सत्यापित करने के लिए हंटिंगटन के समीकरण, या बूलियन बीजगणित के कुछ अन्य स्वयंसिद्धीकरण को रॉबिंस बीजगणित के प्रमेय के रूप में साबित करना आवश्यक है। हंटिंगटन, रॉबिंस, [[अल्फ्रेड टार्स्की]] और अन्य लोगों ने समस्या पर काम किया, लेकिन कोई प्रमाण या प्रति-उदाहरण खोजने में असफल रहे।
रॉबिंस अनुमान को सत्यापित करने के लिए हंटिंगटन के समीकरण, या बूलियन बीजगणित के कुछ अन्य स्वयंसिद्धीकरण को रॉबिंस बीजगणित के प्रमेय के रूप में साबित करना आवश्यक है। हंटिंगटन, रॉबिंस, [[अल्फ्रेड टार्स्की]] और अन्य लोगों ने समस्या पर काम किया, लेकिन कोई प्रमाण या प्रति-उदाहरण खोजने में असफल रहे।


[[विलियम मैकक्यून]] ने 1996 में समीकरणात्मक कहावत सिद्ध करने वाले स्वचालित प्रमेय का उपयोग करके अनुमान को सिद्ध किया। एक सुसंगत संकेतन में रॉबिन्स अनुमान के पूर्ण प्रमाण के लिए और मैकक्यून का बारीकी से अनुसरण करने के लिए, मान (2003) देखें। डाहन (1998) ने मैकक्यून के मशीन प्रूफ को सरल बनाया।
[[विलियम मैकक्यून]] ने 1996 में समीकरणात्मक कहावत सिद्ध करने वाले स्वचालित प्रमेय का उपयोग करके अनुमान को सिद्ध किया। सुसंगत संकेतन में रॉबिन्स अनुमान के पूर्ण प्रमाण के लिए और मैकक्यून का बारीकी से अनुसरण करने के लिए, मान (2003) देखें। डाहन (1998) ने मैकक्यून के मशीन प्रूफ को सरल बनाया।


==यह भी देखें==
==यह भी देखें==

Revision as of 09:37, 8 July 2023

अमूर्त बीजगणित में, रॉबिंस बीजगणित सार्वभौमिक बीजगणित # मूल विचार है जिसमें एकल बाइनरी ऑपरेशन होता है, जिसे आमतौर पर द्वारा दर्शाया जाता है , और एकल यूनरी ऑपरेशन आमतौर पर द्वारा दर्शाया जाता है . ये ऑपरेशन निम्नलिखित सार्वभौमिक बीजगणित#समीकरण को संतुष्ट करते हैं:

सभी तत्वों ए, बी और सी के लिए:

  1. सहयोगिता:
  2. परिवर्तनशीलता:
  3. रॉबिन्स समीकरण:

कई वर्षों तक, यह अनुमान लगाया गया था, लेकिन अप्रमाणित, कि सभी रॉबिन्स बीजगणित बूलियन बीजगणित (संरचना) हैं। यह 1996 में सिद्ध हो गया था, इसलिए रॉबिन्स बीजगणित शब्द अब केवल बूलियन बीजगणित का पर्याय बन गया है।

इतिहास

1933 में, एडवर्ड हटिंगटन ने बूलियन बीजगणित के लिए स्वयंसिद्धों का नया सेट प्रस्तावित किया, जिसमें उपरोक्त (1) और (2) के अलावा:

  • हंटिंगटन का समीकरण:

इन स्वयंसिद्धों से, हंटिंगटन ने बूलियन बीजगणित के सामान्य स्वयंसिद्धों को प्राप्त किया।

इसके तुरंत बाद, हर्बर्ट रॉबिंस ने रॉबिंस अनुमान प्रस्तुत किया, अर्थात् हंटिंगटन समीकरण को रॉबिन्स समीकरण कहे जाने वाले समीकरण से बदला जा सकता है, और परिणाम अभी भी बूलियन बीजगणित (संरचना) होगा। बूलियन बूलियन बीजगणित (संरचना)#परिभाषा और की व्याख्या करेगा बूलियन बूलियन बीजगणित (संरचना)#परिभाषा। बूलियन बूलियन बीजगणित (संरचना)#परिभाषा और स्थिरांक 0 और 1 को रॉबिन्स बीजगणित आदिम से आसानी से परिभाषित किया जाता है। अनुमान के सत्यापन तक, रॉबिन्स की प्रणाली को रॉबिन्स बीजगणित कहा गया।

रॉबिंस अनुमान को सत्यापित करने के लिए हंटिंगटन के समीकरण, या बूलियन बीजगणित के कुछ अन्य स्वयंसिद्धीकरण को रॉबिंस बीजगणित के प्रमेय के रूप में साबित करना आवश्यक है। हंटिंगटन, रॉबिंस, अल्फ्रेड टार्स्की और अन्य लोगों ने समस्या पर काम किया, लेकिन कोई प्रमाण या प्रति-उदाहरण खोजने में असफल रहे।

विलियम मैकक्यून ने 1996 में समीकरणात्मक कहावत सिद्ध करने वाले स्वचालित प्रमेय का उपयोग करके अनुमान को सिद्ध किया। सुसंगत संकेतन में रॉबिन्स अनुमान के पूर्ण प्रमाण के लिए और मैकक्यून का बारीकी से अनुसरण करने के लिए, मान (2003) देखें। डाहन (1998) ने मैकक्यून के मशीन प्रूफ को सरल बनाया।

यह भी देखें

संदर्भ