त्रिकोणमिति में निमोनिक्स: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 12:01, 12 July 2023

त्रिकोणमिति में, त्रिकोणमितीय सर्वसमिका और विभिन्न त्रिकोणमितीय कार्य के बीच संबंधों को याद रखने में मदद के लिए स्मरक का उपयोग करना सामान्य बात है।

एसओएच-सीएएच-टीओए

एक समकोण त्रिभुज की भुजाओं के अनुपात को याद रखने में मदद करने के लिए छवि स्मरणीय

एक समकोण त्रिभुज में साइन, कोसाइन और स्पर्शरेखा अनुपात को अक्षरों की श्रृंखला के रूप में प्रस्तुत करके याद किया जा सकता है, उदाहरण के लिए अंग्रेजी में SOH-CAH-TOA:

साइन = विलोम ÷ कर्ण
कोसाइन = संलग्न ÷ कर्ण
स्पर्शरेखा = 'विपरीत ÷ संलग्न

अक्षरों को याद रखने का एक तरीका उन्हें ध्वन्यात्मक रूप से सुनाना है (अर्थात। /ˌskəˈtə/ SOH-kə-TOH, क्राकाटा के समान)।[1]


वाक्यांश

एक अन्य तरीका अक्षरों को एक वाक्य में विस्तारित करना है, जैसे कि कुछ बूढ़े घोड़े बुढ़ापे में खुशी से सेब चबाते हैं, कुछ बूढ़े हिप्पी ने एक और हिप्पी को एसिड में आशुखंडन करते हुए पकड़ लिया, या हमारे गृहकार्य का अध्ययन हमेशा उपलब्धि प्राप्त करने में मदद कर सकता है। क्रम को बदला जा सकता है, जैसे टॉमी ऑन अ शिप ऑफ़ हिज़ कॉट ए हेरिंग (स्पर्शरेखा, साइन, कोसाइन) या बूढ़े सेना के कर्नल और उनके बेटे को प्रायः हिचकियाँ आती रहती हैं (स्पर्शरेखा, कोसाइन, साइन) या आइए और भूलने की बीमारी से उबरने में मदद के लिए कुछ संतरे लीजिए (कोसाइन, साइन, स्पर्शरेखा)। [2][3] चीनी समुदाय के लोग इसे TOA-CAH-SOH के रूप में याद रखना चुन सकते हैं, जिसका अर्थ होक्किएन में 'बड़े पैरों वाली महिला' Chinese: 大腳嫂; Pe̍h-ōe-jī: tōa-kha-só भी है)।

साइन, कॉस और टैन के अक्षरों को याद करने का एक वैकल्पिक तरीका असंगत अक्षर Oh, Ah, Oh-Ah (यानी) को / ə ˈ.ə/) O/H, A/H, O/A के लिए याद करना है। [4] इन पत्रों के लिए लंबे स्मृतिलेखों में ऑस्कर हैज़ ए होल्ड ऑन एंजी और ऑस्कर हैज़ ए हेप ऑफ़ एप्पल्स सम्मिलित हैं। [2]


सभी छात्र कैलकुलस

प्रत्येक चतुर्थांश में त्रिकोणमितीय फलनों के चिह्न।

सभी छात्र कैलकुलस को समतल के प्रत्येक कार्तीय समन्वय प्रणाली में प्रत्येक त्रिकोणमितीय कार्यों के संकेत के लिए एक स्मरणीय मानते हैं। एएसटीसी अक्षर दर्शाते हैं कि त्रिकोणमितीय कार्यों में से कौन सा सकारात्मक है, जो शीर्ष दाएं प्रथम चतुर्थांश से प्रारम्भ होता है और चतुर्थांश 2 से 4 तक वामावर्त चलता है।

  • चतुर्थांश I (कोण 0 से 90 डिग्री, या 0 से π/2 रेडियन): इस चतुर्थांश में सभी त्रिकोणमितीय कार्य सकारात्मक हैं।
  • चतुर्थांश II (90 से 180 डिग्री के कोण, या π/2 से π रेडियन): इस चतुर्थांश में साइन और सहसंयोजक फलन धनात्मक होते हैं।
  • चतुर्थांश III (कोण 180 से 270 डिग्री, या π से 3π/2 रेडियन): इस चतुर्थांश में स्पर्शरेखा और कोटैंजेंट कार्य सकारात्मक हैं।
  • चतुर्थांश IV (270 से 360 डिग्री तक कोण, या 3π/2 से 2π रेडियन): इस चतुर्थांश में कोसाइन और सेकेंट फलन सकारात्मक हैं।

अन्य स्मरक में सम्मिलित हैं:

  • सेंट्रल के सभी स्टेशन [5]
  • सभी मूर्ख टॉम बिल्लियाँ [5]
  • कॉफी में चीनी मिलाएं [5]
  • सभी विज्ञान शिक्षक भ्रांत हैं [6]
  • एक स्मार्ट ट्रिग क्लास [7]

याद रखने में आसान अन्य स्मरक एसीटीएस और सीएएसटी नियम हैं। इनमें चतुर्थांश 1 से 4 तक क्रमिक रूप से न जाने और चतुर्थांशों की क्रमांकन परंपरा को सुदृढ़ न करने की हानि हैं।

  • सीएएसटी अभी भी वामावर्त दिशा में चलता है लेकिन चतुर्थांश 4 से प्रारम्भ होता है और चतुर्थांश 4, 1, 2, फिर 3 से पारित होते है।
  • एसीटीएस अभी भी चतुर्थांश 1 से प्रारम्भ होता है लेकिन चतुर्थांश 1, 4, 3, फिर 2 से होते हुए दक्षिणावर्त चलता है।

विशेष कोणों की साइन और कोसाइन

0°, 30°, 45°, 60° और 90° के उभयनिष्ठ कोणों की साइन और कोसाइन प्रतिरुप साथ n = 0, 1, ..., 4 का अनुसरण करती हैं, साइन और कोसाइन के लिए क्रमशः n = 4, 3, ..., 0 है :[8]

0° = 0 रेडियन
30° = π/6 रेडियन
45° = π/4 रेडियन
60° = π/3 रेडियन
90° = π/2 रेडियन अनिश्चित


षट्कोण तालिका

त्रिकोणमितीय सर्वसमिकाएँ स्मरणीय

एक अन्य स्मरणीय सभी बुनियादी पहचानों को शीघ्रता से पढ़ने की अनुमति देता है। षट्कोणीय तालिका का निर्माण थोड़ा विचार करके किया जा सकता है: [9]

  1. एक ही बिंदु को छूते हुए, नीचे की ओर इंगित करते हुए तीन त्रिकोण बनाएं। यह फालआउट शेल्टर त्रिदली जैसा दिखता है।
  2. बीच में जहां तीन त्रिकोण स्पर्श करते हैं वहां 1 लिखें
  3. तीन बाएँ बाहरी शीर्षों पर सह के बिना फलन लिखें (ऊपर से नीचे: साइन, स्पर्शरेखा, छेदक)
  4. संबंधित तीन दाएं बाहरी शीर्षों (कोसाइन, कोटैंजेंट, कोसेकेंट) पर सह-कार्य लिखें

परिणामी षट्भुज के किसी भी शीर्ष से प्रारम्भ करना:

  • प्रारंभिक शीर्ष विपरीत शीर्ष पर एक के बराबर होता है। उदाहरण के लिए, है।
  • दक्षिणावर्त या वामावर्त जाने पर, प्रारंभिक शीर्ष उसके बाद के शीर्ष से विभाजित अगले शीर्ष के बराबर होता है। उदाहरण के लिए, है।
  • प्रारंभिक कोण अपने दो निकटतम प्रतिवैस के गुणनफल के बराबर होता है। उदाहरण के लिए, है।
  • किसी त्रिभुज के शीर्ष पर स्थित दो वस्तुओं के वर्गों का योग नीचे की वस्तु के वर्ग के बराबर होता है। ये पाइथागोरस त्रिकोणमितीय सर्वसमिका हैं:

अंतिम बिंदु के अतिरिक्त, प्रत्येक पहचान के लिए विशिष्ट मान इस तालिका में संक्षेपित हैं:

आरंभिक कार्य ... तुल्य 1/विलोम ... तुल्य प्रथम/द्वितीय दक्षिणावर्ती ... प्रथम/द्वितीय वामावर्त/वामावर्त्ती के बराबर है ... दो निकटतम प्रतिवैस के उत्पाद के बराबर है


यह भी देखें

संदर्भ

  1. Humble, Chris (2001). Key Maths : GCSE, Higher. Fiona McGill. Cheltenham: Stanley Thornes Publishers. p. 51. ISBN 0-7487-3396-5. OCLC 47985033.
  2. 2.0 2.1 Weisstein, Eric W. "SOHCAHTOA". MathWorld.
  3. Foster, Jonathan K. (2008). Memory: A Very Short Introduction. Oxford. p. 128. ISBN 978-0-19-280675-8.
  4. Weisstein, Eric W. "Trigonometry". MathWorld.
  5. 5.0 5.1 5.2 "चार चतुर्भुजों में ज्या, कोज्या और स्पर्शज्या". Archived from the original on 2015-01-18. Retrieved 2015-01-18.
  6. Heng, Cheng and Talbert, "Additional Mathematics", page 228
  7. "त्रिकोणमिति के लिए गणित निमोनिक्स और गीत". Retrieved 2019-10-17.
  8. Ron Larson, Precalculus with Limits: A Graphing Approach, Texas Edition
  9. "ट्रिग पहचान के लिए जादुई षट्कोण". Math is Fun.