स्थानीय रूप से बंद उपसमुच्चय: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
* <math>E</math> दो बंद सेटों का अंतर है <math>X.</math> | * <math>E</math> दो बंद सेटों का अंतर है <math>X.</math> | ||
* <math>E</math> में दो खुले सेटों का अंतर है <math>X.</math> | * <math>E</math> में दो खुले सेटों का अंतर है <math>X.</math> | ||
दूसरी शर्त स्थानीय रूप से बंद शब्दावली को उचित ठहराती है और बोर्बाकी की स्थानीय रूप से बंद की परिभाषा है।<ref name="Bourbaki" />यह देखने के लिए कि दूसरी शर्त तीसरी का तात्पर्य है, उपसमुच्चय के लिए तथ्यों का उपयोग करें <math>A \subseteq B,</math> <math>A</math> में बंद है <math>B</math> | दूसरी शर्त स्थानीय रूप से बंद शब्दावली को उचित ठहराती है और बोर्बाकी की स्थानीय रूप से बंद की परिभाषा है।<ref name="Bourbaki" />यह देखने के लिए कि दूसरी शर्त तीसरी का तात्पर्य है, उपसमुच्चय के लिए तथ्यों का उपयोग करें <math>A \subseteq B,</math> <math>A</math> में बंद है <math>B</math> यदि और केवल यदि <math>A = \overline{A} \cap B</math> और वह उपसमुच्चय के लिए <math>E</math> और खुला उपसमुच्चय <math>U,</math> <math>\overline{E} \cap U = \overline{E \cap U} \cap U.</math> | ||
== उदाहरण == | == उदाहरण == | ||
अंतराल <math>(0, 1] = (0, 2) \cap [0, 1]</math> का स्थानीय रूप से बंद उपसमूह है <math>\Reals.</math> दूसरे उदाहरण के लिए, सापेक्ष आंतरिक भाग पर विचार करें <math>D</math> बंद डिस्क में <math>\Reals^3.</math> यह स्थानीय रूप से बंद है क्योंकि यह बंद डिस्क और खुली गेंद का प्रतिच्छेदन है। | अंतराल <math>(0, 1] = (0, 2) \cap [0, 1]</math> का स्थानीय रूप से बंद उपसमूह है <math>\Reals.</math> दूसरे उदाहरण के लिए, सापेक्ष आंतरिक भाग पर विचार करें <math>D</math> बंद डिस्क में <math>\Reals^3.</math> यह स्थानीय रूप से बंद है क्योंकि यह बंद डिस्क और खुली गेंद का प्रतिच्छेदन है। | ||
Line 15: | Line 15: | ||
==गुण== | ==गुण== | ||
स्थानीय रूप से बंद सेटों के निरंतर मानचित्र के | स्थानीय रूप से बंद सेटों के निरंतर मानचित्र के अनुसार परिमित चौराहे और पूर्व-छवि स्थानीय रूप से बंद हैं।<ref name="Bourbaki" />दूसरी ओर, संघ और स्थानीय रूप से बंद उपसमुच्चय के पूरक को स्थानीय रूप से बंद करने की आवश्यकता नहीं है।<ref>{{harvnb|Bourbaki|2007|loc=Ch. 1, § 3, Exercise 7.}}</ref> (यह [[रचनात्मक सेट (टोपोलॉजी)]] की धारणा को प्रेरित करता है।) | ||
विशेष रूप से [[स्तरीकरण सिद्धांत]] में, स्थानीय रूप से बंद उपसमुच्चय के लिए <math>E,</math> पूरक <math>\overline{E} \setminus E</math> की सीमा कहलाती है <math>E</math> ([[टोपोलॉजिकल सीमा]] से भ्रमित न हों)।<ref name="Explanation" /> | विशेष रूप से [[स्तरीकरण सिद्धांत]] में, स्थानीय रूप से बंद उपसमुच्चय के लिए <math>E,</math> पूरक <math>\overline{E} \setminus E</math> की सीमा कहलाती है <math>E</math> ([[टोपोलॉजिकल सीमा]] से भ्रमित न हों)।<ref name="Explanation" />यदि <math>E</math> मैनिफोल्ड की बंद सबमैनिफोल्ड-विथ-बाउंड्री है <math>M,</math> फिर सापेक्ष आंतरिक (अर्थात, कई गुना के रूप में आंतरिक)। <math>E</math> में स्थानीय रूप से बंद है <math>M</math> और मैनिफोल्ड के रूप में इसकी सीमा स्थानीय रूप से बंद उपसमुच्चय के रूप में इसकी सीमा के समान है।<ref name="Explanation" /> | ||
टोपोलॉजिकल स्पेस कहा जाता है{{visible anchor|submaximal|submaximal space}} यदि प्रत्येक उपसमूह स्थानीय रूप से बंद है। इस धारणा के बारे में अधिक जानकारी के लिए टोपोलॉजी#एस की शब्दावली देखें। | टोपोलॉजिकल स्पेस कहा जाता है{{visible anchor|submaximal|submaximal space}} यदि प्रत्येक उपसमूह स्थानीय रूप से बंद है। इस धारणा के बारे में अधिक जानकारी के लिए टोपोलॉजी#एस की शब्दावली देखें। |
Revision as of 10:43, 8 July 2023
टोपोलॉजी में, गणित की शाखा, उपसमुच्चय टोपोलॉजिकल स्पेस का कहा जाता है कि यदि निम्नलिखित में से कोई भी समकक्ष शर्तें पूरी होती हैं तो स्थानीय रूप से बंद कर दिया जाता है:[1][2][3][4]
- खुले सेट और बंद सेट का प्रतिच्छेदन है
- प्रत्येक बिंदु के लिए वहाँ पड़ोस है का ऐसा है कि में बंद है
- इसके बंद होने का खुला उपसमुच्चय है
- सेट में बंद है
- दो बंद सेटों का अंतर है
- में दो खुले सेटों का अंतर है
दूसरी शर्त स्थानीय रूप से बंद शब्दावली को उचित ठहराती है और बोर्बाकी की स्थानीय रूप से बंद की परिभाषा है।[1]यह देखने के लिए कि दूसरी शर्त तीसरी का तात्पर्य है, उपसमुच्चय के लिए तथ्यों का उपयोग करें में बंद है यदि और केवल यदि और वह उपसमुच्चय के लिए और खुला उपसमुच्चय
उदाहरण
अंतराल का स्थानीय रूप से बंद उपसमूह है दूसरे उदाहरण के लिए, सापेक्ष आंतरिक भाग पर विचार करें बंद डिस्क में यह स्थानीय रूप से बंद है क्योंकि यह बंद डिस्क और खुली गेंद का प्रतिच्छेदन है।
याद रखें, परिभाषा के अनुसार, सबमैनिफोल्ड की -कई गुना प्रत्येक बिंदु के लिए ऐसा उपसमुच्चय है में चार्ट है इसके चारों ओर ऐसा है कि इसलिए, सबमैनिफोल्ड स्थानीय रूप से बंद है।[5] यहाँ बीजगणितीय ज्यामिति का उदाहरण दिया गया है। मान लीजिए कि U प्रक्षेप्य किस्म X (ज़ारिस्की टोपोलॉजी में) पर खुला एफ़िन चार्ट है। फिर यू की प्रत्येक बंद उप-विविधता वाई स्थानीय रूप से एक्स में बंद है; अर्थात्, कहाँ X में Y के बंद होने को दर्शाता है। (अर्ध-प्रोजेक्टिव किस्म और अर्ध-एफ़िन किस्म भी देखें।)
गुण
स्थानीय रूप से बंद सेटों के निरंतर मानचित्र के अनुसार परिमित चौराहे और पूर्व-छवि स्थानीय रूप से बंद हैं।[1]दूसरी ओर, संघ और स्थानीय रूप से बंद उपसमुच्चय के पूरक को स्थानीय रूप से बंद करने की आवश्यकता नहीं है।[6] (यह रचनात्मक सेट (टोपोलॉजी) की धारणा को प्रेरित करता है।)
विशेष रूप से स्तरीकरण सिद्धांत में, स्थानीय रूप से बंद उपसमुच्चय के लिए पूरक की सीमा कहलाती है (टोपोलॉजिकल सीमा से भ्रमित न हों)।[2]यदि मैनिफोल्ड की बंद सबमैनिफोल्ड-विथ-बाउंड्री है फिर सापेक्ष आंतरिक (अर्थात, कई गुना के रूप में आंतरिक)। में स्थानीय रूप से बंद है और मैनिफोल्ड के रूप में इसकी सीमा स्थानीय रूप से बंद उपसमुच्चय के रूप में इसकी सीमा के समान है।[2]
टोपोलॉजिकल स्पेस कहा जाता हैsubmaximal यदि प्रत्येक उपसमूह स्थानीय रूप से बंद है। इस धारणा के बारे में अधिक जानकारी के लिए टोपोलॉजी#एस की शब्दावली देखें।
यह भी देखें
टिप्पणियाँ
- ↑ 1.0 1.1 1.2 Bourbaki 2007, Ch. 1, § 3, no. 3.
- ↑ 2.0 2.1 2.2 Pflaum 2001, Explanation 1.1.2.
- ↑ Ganster, M.; Reilly, I. L. (1989). "स्थानीय रूप से बंद सेट और एलसी-निरंतर कार्य". International Journal of Mathematics and Mathematical Sciences (in English). 12 (3): 417–424. doi:10.1155/S0161171289000505. ISSN 0161-1712.
- ↑ Engelking 1989, Exercise 2.7.2.
- ↑ Mather, John (2012). "टोपोलॉजिकल स्थिरता पर नोट्स". Bulletin of the American Mathematical Society. 49 (4): 475–506. doi:10.1090/S0273-0979-2012-01383-6.section 1, p. 476
- ↑ Bourbaki 2007, Ch. 1, § 3, Exercise 7.
संदर्भ
- Bourbaki, Topologie générale, 2007.
- Bourbaki, Nicolas (1989) [1966]. General Topology: Chapters 1–4 [Topologie Générale]. Éléments de mathématique. Berlin New York: Springer Science & Business Media. ISBN 978-3-540-64241-1. OCLC 18588129.
- Engelking, Ryszard (1989). General Topology. Heldermann Verlag, Berlin. ISBN 3-88538-006-4.
- Pflaum, Markus J. (2001). Analytic and geometric study of stratified spaces. Lecture Notes in Mathematics. Vol. 1768. Berlin: Springer. ISBN 3-540-42626-4. OCLC 47892611.
बाहरी संबंध
- locally closed set at the nLab