वर्ग क्रमांक समस्या: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Finding a complete list of imaginary quadratic fields having a given class number}} | {{short description|Finding a complete list of imaginary quadratic fields having a given class number}} | ||
गणित में, गॉस वर्ग संख्या समस्या ([[काल्पनिक द्विघात क्षेत्र]] | गणित में, '''गॉस वर्ग संख्या समस्या''' ('''[[काल्पनिक द्विघात क्षेत्र|काल्पनिक द्विघात क्षेत्रों]] के लिए'''), जैसा कि सामान्यतः समझा जाता है, प्रत्येक ''n'' ≥ 1 के लिए काल्पनिक द्विघात क्षेत्रों की पूर्ण सूची प्रदान करना है <math>\mathbb{Q}(\sqrt{d})</math> (ऋणात्मक पूर्णांकों के लिए d) जिसकी [[वर्ग संख्या (संख्या सिद्धांत)]] n होती है। इसका नाम [[कार्ल फ्रेडरिक गॉस]] के नाम पर रखा गया है। इसे बीजगणितीय संख्या क्षेत्र के विभेदक के संदर्भ में भी कहा जा सकता है। इस प्रकार वास्तविक द्विघात क्षेत्रों और व्यवहार के लिए संबंधित प्रश्न <math>d \to -\infty</math> होते हैं। | ||
कठिनाई सीमाओं की प्रभावी गणना में | कठिनाई सीमाओं की प्रभावी गणना में होता है। इस प्रकार किसी दिए गए विभेदक के लिए, वर्ग संख्या की गणना करना सरल होता है और वर्ग संख्या पर अनेक अप्रभावी निचली सीमाएं होती हैं (जिसका अर्थ होता है कि उनमें स्थिरांक सम्मिलित है जिसकी गणना नहीं की जाती है), किन्तु प्रभावी सीमाएं (और सूचियों की पूर्णता के स्पष्ट प्रमाण) कठिन होते हैं। | ||
==गॉस के मूल अनुमान== | ==गॉस के मूल अनुमान== | ||
समस्याएँ 1801 के गॉस के [[अंकगणितीय विवेचन]] (खंड V, अनुच्छेद 303 और 304) में प्रस्तुत की गई हैं।<ref>[http://www.claymath.org/publications/Gauss_Dirichlet/stark.pdf The Gauss Class-Number Problems], by H. M. Stark</ref> | समस्याएँ सन्न 1801 के गॉस के [[अंकगणितीय विवेचन]] (खंड V, अनुच्छेद 303 और 304) में प्रस्तुत की गई हैं।<ref>[http://www.claymath.org/publications/Gauss_Dirichlet/stark.pdf The Gauss Class-Number Problems], by H. M. Stark</ref> | ||
गॉस पहले दो अनुमानों को बताते हुए अनुच्छेद 303 में काल्पनिक द्विघात क्षेत्रों पर चर्चा करते हैं | |||
सामान्यतः गॉस पहले दो अनुमानों को बताते हुए अनुच्छेद 303 में काल्पनिक द्विघात क्षेत्रों पर चर्चा करते हैं और तीसरे अनुमान को बताते हुए अनुच्छेद 304 में वास्तविक द्विघात क्षेत्रों पर चर्चा करते हैं। | |||
;गॉस अनुमान (वर्ग संख्या अनंत की ओर प्रवृत्त होती है): <math>h(d) \to \infty\text{ as }d\to -\infty.</math> | ;गॉस अनुमान (वर्ग संख्या अनंत की ओर प्रवृत्त होती है): <math>h(d) \to \infty\text{ as }d\to -\infty.</math> | ||
;गॉस वर्ग संख्या समस्या (निम्न वर्ग संख्या सूचियाँ): दिए गए निम्न वर्ग संख्या (जैसे 1, 2 | ;गॉस वर्ग संख्या समस्या (निम्न वर्ग संख्या सूचियाँ): दिए गए निम्न वर्ग संख्या (जैसे 1, 2 और 3) के लिए, गॉस दिए गए वर्ग संख्या के साथ काल्पनिक द्विघात क्षेत्रों की सूचियाँ देता है और उन्हें पूर्ण मानता है। | ||
;वर्ग संख्या के साथ अनंत रूप से अनेक वास्तविक द्विघात क्षेत्र: गॉस का अनुमान है कि वर्ग संख्या के साथ अनंत रूप से अनेक वास्तविक द्विघात क्षेत्र हैं। | ;वर्ग संख्या के साथ अनंत रूप से अनेक वास्तविक द्विघात क्षेत्र: गॉस का अनुमान यह है कि वर्ग संख्या के साथ अनंत रूप से अनेक वास्तविक द्विघात क्षेत्र होते हैं। | ||
काल्पनिक द्विघात क्षेत्रों के लिए मूल गॉस वर्ग संख्या समस्या आधुनिक कथन की तुलना में अधिक भिन्न और सरल | काल्पनिक द्विघात क्षेत्रों के लिए मूल गॉस वर्ग संख्या समस्या आधुनिक कथन की तुलना में अधिक भिन्न और सरल होते है। वह विभेदकों तक ही सीमित होता है और गैर-मौलिक विभेदकों की अनुमति देता है। | ||
==स्थिति== | ==स्थिति== | ||
;गॉस अनुमान: हल, हेइलब्रॉन, 1934। | ;गॉस अनुमान: हल, हेइलब्रॉन, सन्न 1934। | ||
;निम्न वर्ग संख्या सूचियाँ: वर्ग संख्या 1: हल, बेकर (1966), स्टार्क (1967), हेगनर (1952)। | ;निम्न वर्ग संख्या सूचियाँ: वर्ग संख्या 1: हल, बेकर (1966), स्टार्क (1967), हेगनर (1952)। | ||
:कक्षा संख्या 2: हल, बेकर (1971), स्टार्क (1971)<ref name=irelandrosen>{{citation | last1 = Ireland | first1 = K. |last2 = Rosen | first2 = M. | title = A Classical Introduction to Modern Number Theory | publisher = Springer-Verlag | year = 1993 | location = New York, New York | pages = 358–361 | isbn = 978-0-387-97329-6}}</ref> | :कक्षा संख्या 2: हल, बेकर (1971), स्टार्क (1971)<ref name=irelandrosen>{{citation | last1 = Ireland | first1 = K. |last2 = Rosen | first2 = M. | title = A Classical Introduction to Modern Number Theory | publisher = Springer-Verlag | year = 1993 | location = New York, New York | pages = 358–361 | isbn = 978-0-387-97329-6}}</ref> | ||
:कक्षा संख्या 3: हल, ओस्टरले (1985)<ref name=irelandrosen/> | :कक्षा संख्या 3: हल, ओस्टरले (1985)<ref name=irelandrosen/> कक्षा संख्याएँ 100 तक: हल, वाटकिंस सन्न 2004<ref name=watkins>{{citation | last1 = Watkins | first1 = M. | title = Class numbers of imaginary quadratic fields | series = Mathematics of Computation | volume = 73 | issue = 246 | year = 2004 | pages = 907–938 | url=https://www.ams.org/mcom/2004-73-246/S0025-5718-03-01517-5/home.html| doi = 10.1090/S0025-5718-03-01517-5 | doi-access = free }}</ref> | ||
;वर्ग संख्या के साथ अनंत रूप से अनेक वास्तविक द्विघात क्षेत्र: खुला। | ;वर्ग संख्या के साथ अनंत रूप से अनेक वास्तविक द्विघात क्षेत्र: खुला। | ||
==वर्ग क्रमांक 1 के विभेदकों की सूचियाँ== | ==वर्ग क्रमांक 1 के विभेदकों की सूचियाँ== | ||
{{details| | {{details|हेगनर संख्या}} | ||
काल्पनिक द्विघात संख्या क्षेत्र के लिए, | |||
काल्पनिक द्विघात संख्या क्षेत्र के लिए, वर्ग संख्या 1 के (मौलिक) विभेदक होते हैं। | |||
:<math>d=-3,-4,-7,-8,-11,-19,-43,-67,-163.</math> | :<math>d=-3,-4,-7,-8,-11,-19,-43,-67,-163.</math> | ||
वर्ग संख्या 1 के गैर-मौलिक विभेदक | वर्ग संख्या 1 के गैर-मौलिक विभेदक होते हैं। | ||
:<math>d=-12,-16,-27,-28.</math> | :<math>d=-12,-16,-27,-28.</math> | ||
इस प्रकार, वर्ग संख्या 1 के सम विभेदक, मौलिक और गैर-मौलिक (गॉस का मूल प्रश्न) | इस प्रकार, वर्ग संख्या 1 के सम विभेदक, मौलिक और गैर-मौलिक (गॉस का मूल प्रश्न) होते हैं। | ||
:<math>d=-4,-8,-12,-16,-28.</math> | :<math>d=-4,-8,-12,-16,-28.</math> | ||
==आधुनिक विकास== | ==आधुनिक विकास== | ||
1934 में, [[हंस हेइलब्रोन]] ने गॉस अनुमान को सिद्ध | सन्न 1934 में, [[हंस हेइलब्रोन]] ने गॉस अनुमान को सिद्ध किया था। इस प्रकार समान रूप से, किसी भी वर्ग संख्या के लिए, उस वर्ग संख्या के साथ केवल सीमित रूप से अनेक काल्पनिक द्विघात संख्या क्षेत्र होते हैं। | ||
इसके अतिरिक्त सन्न 1934 में, हेइलब्रॉन और [[एडवर्ड लिनफ़ुट]] ने दिखाया था कि वर्ग संख्या 1 के साथ अधिकतम 10 काल्पनिक द्विघात संख्या क्षेत्र होते थे (9 ज्ञात और अधिकतम आगे)। इस प्रकार परिणाम अप्रभावी था ([[संख्या सिद्धांत में प्रभावी परिणाम]] देखें)। इसने शेष क्षेत्र के आकार पर कोई सीमा नहीं दी गई थी। | |||
सामान्यतः बाद के विकास में, स्थिति n = 1 पर पहली बार [[कर्ट हेगनर]] द्वारा चर्चा की गई थी, जिसमें [[मॉड्यूलर रूप|मॉड्यूलर रूपों]] और [[मॉड्यूलर समीकरण|मॉड्यूलर समीकरणों]] का उपयोग करके दिखाया गया था कि ऐसा कोई क्षेत्र उपस्तिथ नहीं हो सकता है। यह कार्य प्रारंभ में स्वीकार नहीं किया गया था। इस प्रकार केवल [[हेरोल्ड स्टार्क]] और [[ ब्रायन बिर्च |ब्रायन बिर्च]] के पश्चात् के कार्य से (उदाहरण के लिए स्टार्क-हेगनर प्रमेय और [[हेगनर संख्या]] पर) स्थिति स्पष्ट हुई थी और हेगनर के कार्य को समझा गया था। अतः व्यावहारिक रूप से, [[एलन बेकर (गणितज्ञ)]] ने [[बीजगणितीय संख्या|बीजगणितीय संख्याओं]] के [[लघुगणक में रैखिक रूप|लघुगणक में रैखिक रूपों]] पर वह सिद्ध किया था, जिसे अब हम बेकर के प्रमेय के रूप में जानते हैं, जिसने समस्या को पूर्ण प्रकार से भिन्न विधि से हल किया था। इस स्थिति में n = 2 को कुछ ही समय पश्चात्, कम से कम सैद्धांतिक रूप से बेकर के कार्य के अनुप्रयोग के रूप में निपटाया गया था।<ref name=Baker>{{harvtxt|Baker|1990}}</ref> | |||
वर्ग संख्या 1 के साथ काल्पनिक द्विघात क्षेत्रों की पूर्ण सूची है <math>\mathbf{Q}(\sqrt{d})</math> जहां d इनमें से एकल रूप होता है। | |||
वर्ग संख्या 1 के साथ काल्पनिक द्विघात क्षेत्रों की पूर्ण सूची है <math>\mathbf{Q}(\sqrt{d})</math> जहां d इनमें से | |||
:<math>-1, -2, -3, -7, -11, -19, -43, -67, -163.</math> | :<math>-1, -2, -3, -7, -11, -19, -43, -67, -163.</math> | ||
सामान्य स्थिति 1976 में [[डोरियन गोल्डफील्ड]] की खोज की प्रतीक्षा कर रहा था कि वर्ग संख्या समस्या को [[अण्डाकार वक्र]] | सामान्य स्थिति सन्न 1976 में [[डोरियन गोल्डफील्ड]] की खोज की प्रतीक्षा कर रहा था कि वर्ग संख्या समस्या को [[अण्डाकार वक्र|अण्डाकार वक्रों]] के एल-फलन से जोड़ा जा सकता है।<ref name="Goldfeld">{{harvtxt|Goldfeld|1985}}</ref> इसने ऐसे एल-फलन के एकाधिक शून्य के अस्तित्व को स्थापित करने के बारे में प्रभावी दृढ़ संकल्प के प्रश्न को प्रभावी रूप से कम कर दिया गया था।<ref name="Goldfeld" /> इस प्रकार सन्न 1986 में ग्रॉस-ज़ैगियर प्रमेय के प्रमाण के साथ, किसी दिए गए वर्ग संख्या के साथ काल्पनिक द्विघात क्षेत्रों की पूर्ण सूची सीमित गणना द्वारा निर्दिष्ट की जा सकती है। अतः n = 100 तक की सभी स्थितियों की गणना सन्न 2004 में वाटकिंस द्वारा की गई थी।<ref name="watkins" /> इसकी कक्षा संख्या <math>\mathbf{Q}(\sqrt{-d})</math> जिससे कि d = 1, 2, 3, ... होती है। | ||
:<math>1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 4, 2, 1, 4, 1, 1, 2, 4, 2, 3, 2, 1, 6, 1, 1, 6, 4, 3, 1, ...</math> {{OEIS|A202084}}. | :<math>1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 4, 2, 1, 4, 1, 1, 2, 4, 2, 3, 2, 1, 6, 1, 1, 6, 4, 3, 1, ...</math> {{OEIS|A202084}}. | ||
==वास्तविक द्विघात क्षेत्र== | ==वास्तविक द्विघात क्षेत्र== | ||
वास्तविक द्विघात क्षेत्रों | वास्तविक द्विघात क्षेत्रों की विरोधाभासी स्थिति बहुत भिन्न होती है और बहुत कम ज्ञात होती है। ऐसा इसलिए होता है जिससे कि वर्ग संख्या के लिए विश्लेषणात्मक सूत्र में जो प्रवेश करता है वह अपने आप में वर्ग संख्या h नहीं होती है - बल्कि h log ε होता है, जहां ε [[मौलिक इकाई (संख्या सिद्धांत)]] है। इस अतिरिक्त कारक को नियंत्रित करना कठिन होता है। यह अच्छी प्रकार से स्थिति हो सकता है कि वास्तविक द्विघात क्षेत्रों के लिए वर्ग संख्या 1 अनंत बार होती है। | ||
कोहेन-लेनस्ट्रा अनुमान{{sfn|Cohen|1993|loc=ch. 5.10}} द्विघात क्षेत्रों के वर्ग समूहों की संरचना के बारे में अधिक त्रुटिहीन अनुमानों का समूह है। वास्तविक क्षेत्रों के लिए उनका अनुमान है कि अभाज्य के वर्गमूल से सटे हुए प्राप्त लगभग 75.45% क्षेत्रों में वर्ग संख्या 1 | कोहेन-लेनस्ट्रा अनुमान{{sfn|Cohen|1993|loc=ch. 5.10}} द्विघात क्षेत्रों के वर्ग समूहों की संरचना के बारे में अधिक त्रुटिहीन अनुमानों का समूह होता है। इस प्रकार वास्तविक क्षेत्रों के लिए उनका अनुमान है कि अभाज्य के वर्गमूल से सटे हुए प्राप्त लगभग 75.45% क्षेत्रों में वर्ग संख्या 1 होती है, जो परिणाम गणनाओं से मेल खाती है।<ref>{{Cite journal | ||
| last1 = te Riele | | last1 = te Riele | ||
| first1 = Herman | | first1 = Herman |
Revision as of 20:54, 5 July 2023
गणित में, गॉस वर्ग संख्या समस्या (काल्पनिक द्विघात क्षेत्रों के लिए), जैसा कि सामान्यतः समझा जाता है, प्रत्येक n ≥ 1 के लिए काल्पनिक द्विघात क्षेत्रों की पूर्ण सूची प्रदान करना है (ऋणात्मक पूर्णांकों के लिए d) जिसकी वर्ग संख्या (संख्या सिद्धांत) n होती है। इसका नाम कार्ल फ्रेडरिक गॉस के नाम पर रखा गया है। इसे बीजगणितीय संख्या क्षेत्र के विभेदक के संदर्भ में भी कहा जा सकता है। इस प्रकार वास्तविक द्विघात क्षेत्रों और व्यवहार के लिए संबंधित प्रश्न होते हैं।
कठिनाई सीमाओं की प्रभावी गणना में होता है। इस प्रकार किसी दिए गए विभेदक के लिए, वर्ग संख्या की गणना करना सरल होता है और वर्ग संख्या पर अनेक अप्रभावी निचली सीमाएं होती हैं (जिसका अर्थ होता है कि उनमें स्थिरांक सम्मिलित है जिसकी गणना नहीं की जाती है), किन्तु प्रभावी सीमाएं (और सूचियों की पूर्णता के स्पष्ट प्रमाण) कठिन होते हैं।
गॉस के मूल अनुमान
समस्याएँ सन्न 1801 के गॉस के अंकगणितीय विवेचन (खंड V, अनुच्छेद 303 और 304) में प्रस्तुत की गई हैं।[1]
सामान्यतः गॉस पहले दो अनुमानों को बताते हुए अनुच्छेद 303 में काल्पनिक द्विघात क्षेत्रों पर चर्चा करते हैं और तीसरे अनुमान को बताते हुए अनुच्छेद 304 में वास्तविक द्विघात क्षेत्रों पर चर्चा करते हैं।
- गॉस अनुमान (वर्ग संख्या अनंत की ओर प्रवृत्त होती है)
- गॉस वर्ग संख्या समस्या (निम्न वर्ग संख्या सूचियाँ)
- दिए गए निम्न वर्ग संख्या (जैसे 1, 2 और 3) के लिए, गॉस दिए गए वर्ग संख्या के साथ काल्पनिक द्विघात क्षेत्रों की सूचियाँ देता है और उन्हें पूर्ण मानता है।
- वर्ग संख्या के साथ अनंत रूप से अनेक वास्तविक द्विघात क्षेत्र
- गॉस का अनुमान यह है कि वर्ग संख्या के साथ अनंत रूप से अनेक वास्तविक द्विघात क्षेत्र होते हैं।
काल्पनिक द्विघात क्षेत्रों के लिए मूल गॉस वर्ग संख्या समस्या आधुनिक कथन की तुलना में अधिक भिन्न और सरल होते है। वह विभेदकों तक ही सीमित होता है और गैर-मौलिक विभेदकों की अनुमति देता है।
स्थिति
- गॉस अनुमान
- हल, हेइलब्रॉन, सन्न 1934।
- निम्न वर्ग संख्या सूचियाँ
- वर्ग संख्या 1: हल, बेकर (1966), स्टार्क (1967), हेगनर (1952)।
- कक्षा संख्या 2: हल, बेकर (1971), स्टार्क (1971)[2]
- कक्षा संख्या 3: हल, ओस्टरले (1985)[2] कक्षा संख्याएँ 100 तक: हल, वाटकिंस सन्न 2004[3]
- वर्ग संख्या के साथ अनंत रूप से अनेक वास्तविक द्विघात क्षेत्र
- खुला।
वर्ग क्रमांक 1 के विभेदकों की सूचियाँ
काल्पनिक द्विघात संख्या क्षेत्र के लिए, वर्ग संख्या 1 के (मौलिक) विभेदक होते हैं।
वर्ग संख्या 1 के गैर-मौलिक विभेदक होते हैं।
इस प्रकार, वर्ग संख्या 1 के सम विभेदक, मौलिक और गैर-मौलिक (गॉस का मूल प्रश्न) होते हैं।
आधुनिक विकास
सन्न 1934 में, हंस हेइलब्रोन ने गॉस अनुमान को सिद्ध किया था। इस प्रकार समान रूप से, किसी भी वर्ग संख्या के लिए, उस वर्ग संख्या के साथ केवल सीमित रूप से अनेक काल्पनिक द्विघात संख्या क्षेत्र होते हैं।
इसके अतिरिक्त सन्न 1934 में, हेइलब्रॉन और एडवर्ड लिनफ़ुट ने दिखाया था कि वर्ग संख्या 1 के साथ अधिकतम 10 काल्पनिक द्विघात संख्या क्षेत्र होते थे (9 ज्ञात और अधिकतम आगे)। इस प्रकार परिणाम अप्रभावी था (संख्या सिद्धांत में प्रभावी परिणाम देखें)। इसने शेष क्षेत्र के आकार पर कोई सीमा नहीं दी गई थी।
सामान्यतः बाद के विकास में, स्थिति n = 1 पर पहली बार कर्ट हेगनर द्वारा चर्चा की गई थी, जिसमें मॉड्यूलर रूपों और मॉड्यूलर समीकरणों का उपयोग करके दिखाया गया था कि ऐसा कोई क्षेत्र उपस्तिथ नहीं हो सकता है। यह कार्य प्रारंभ में स्वीकार नहीं किया गया था। इस प्रकार केवल हेरोल्ड स्टार्क और ब्रायन बिर्च के पश्चात् के कार्य से (उदाहरण के लिए स्टार्क-हेगनर प्रमेय और हेगनर संख्या पर) स्थिति स्पष्ट हुई थी और हेगनर के कार्य को समझा गया था। अतः व्यावहारिक रूप से, एलन बेकर (गणितज्ञ) ने बीजगणितीय संख्याओं के लघुगणक में रैखिक रूपों पर वह सिद्ध किया था, जिसे अब हम बेकर के प्रमेय के रूप में जानते हैं, जिसने समस्या को पूर्ण प्रकार से भिन्न विधि से हल किया था। इस स्थिति में n = 2 को कुछ ही समय पश्चात्, कम से कम सैद्धांतिक रूप से बेकर के कार्य के अनुप्रयोग के रूप में निपटाया गया था।[4]
वर्ग संख्या 1 के साथ काल्पनिक द्विघात क्षेत्रों की पूर्ण सूची है जहां d इनमें से एकल रूप होता है।
सामान्य स्थिति सन्न 1976 में डोरियन गोल्डफील्ड की खोज की प्रतीक्षा कर रहा था कि वर्ग संख्या समस्या को अण्डाकार वक्रों के एल-फलन से जोड़ा जा सकता है।[5] इसने ऐसे एल-फलन के एकाधिक शून्य के अस्तित्व को स्थापित करने के बारे में प्रभावी दृढ़ संकल्प के प्रश्न को प्रभावी रूप से कम कर दिया गया था।[5] इस प्रकार सन्न 1986 में ग्रॉस-ज़ैगियर प्रमेय के प्रमाण के साथ, किसी दिए गए वर्ग संख्या के साथ काल्पनिक द्विघात क्षेत्रों की पूर्ण सूची सीमित गणना द्वारा निर्दिष्ट की जा सकती है। अतः n = 100 तक की सभी स्थितियों की गणना सन्न 2004 में वाटकिंस द्वारा की गई थी।[3] इसकी कक्षा संख्या जिससे कि d = 1, 2, 3, ... होती है।
वास्तविक द्विघात क्षेत्र
वास्तविक द्विघात क्षेत्रों की विरोधाभासी स्थिति बहुत भिन्न होती है और बहुत कम ज्ञात होती है। ऐसा इसलिए होता है जिससे कि वर्ग संख्या के लिए विश्लेषणात्मक सूत्र में जो प्रवेश करता है वह अपने आप में वर्ग संख्या h नहीं होती है - बल्कि h log ε होता है, जहां ε मौलिक इकाई (संख्या सिद्धांत) है। इस अतिरिक्त कारक को नियंत्रित करना कठिन होता है। यह अच्छी प्रकार से स्थिति हो सकता है कि वास्तविक द्विघात क्षेत्रों के लिए वर्ग संख्या 1 अनंत बार होती है।
कोहेन-लेनस्ट्रा अनुमान[6] द्विघात क्षेत्रों के वर्ग समूहों की संरचना के बारे में अधिक त्रुटिहीन अनुमानों का समूह होता है। इस प्रकार वास्तविक क्षेत्रों के लिए उनका अनुमान है कि अभाज्य के वर्गमूल से सटे हुए प्राप्त लगभग 75.45% क्षेत्रों में वर्ग संख्या 1 होती है, जो परिणाम गणनाओं से मेल खाती है।[7]
यह भी देखें
टिप्पणियाँ
- ↑ The Gauss Class-Number Problems, by H. M. Stark
- ↑ 2.0 2.1 Ireland, K.; Rosen, M. (1993), A Classical Introduction to Modern Number Theory, New York, New York: Springer-Verlag, pp. 358–361, ISBN 978-0-387-97329-6
- ↑ 3.0 3.1 Watkins, M. (2004), Class numbers of imaginary quadratic fields, Mathematics of Computation, vol. 73, pp. 907–938, doi:10.1090/S0025-5718-03-01517-5
- ↑ Baker (1990)
- ↑ 5.0 5.1 Goldfeld (1985)
- ↑ Cohen 1993, ch. 5.10.
- ↑ te Riele, Herman; Williams, Hugh (2003). "New Computations Concerning the Cohen-Lenstra Heuristics" (PDF). Experimental Mathematics. 12 (1): 99–113. doi:10.1080/10586458.2003.10504715. S2CID 10221100.
संदर्भ
- Goldfeld, Dorian (July 1985), "Gauss' Class Number Problem For Imaginary Quadratic Fields" (PDF), Bulletin of the American Mathematical Society, 13 (1): 23–37, doi:10.1090/S0273-0979-1985-15352-2
- Heegner, Kurt (1952), "Diophantische Analysis und Modulfunktionen", Mathematische Zeitschrift, 56 (3): 227–253, doi:10.1007/BF01174749, MR 0053135, S2CID 120109035
- Cohen, Henri (1993), A Course in Computational Algebraic Number Theory, Berlin: Springer, ISBN 978-3-540-55640-4
- Baker, Alan (1990), Transcendental number theory, Cambridge Mathematical Library (2nd ed.), Cambridge University Press, ISBN 978-0-521-39791-9, MR 0422171