व्यापकता के नुकसान के बिना: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Expression in mathematics}} | {{Short description|Expression in mathematics}} | ||
'''व्यापकता | '''व्यापकता की हानि के बिना''' (अधिकांशतः '''डब्ल्यूओएलओजी, व्लॉग''' का संक्षिप्त रूप<ref>{{Cite web|url=https://artofproblemsolving.com/wiki/index.php/Without_loss_of_generality|title=व्यापकता के नुकसान के बिना|website=Art of Problem Solving|access-date=2019-10-21}}</ref> या डब्ल्यू.एल.ओ.जी., '''सामान्यतः बिना किसी हानि के''' व्यापकता या '''बिना किसी हानि''' के बिना कम सामान्यतः कहा जाता है) गणित में अधिकांशतः उपयोग की जाने वाली अभिव्यक्ति होती है। इस शब्द का उपयोग उस धारणा को इंगित करने के लिए किया जाता है जो किसी विशेष स्थिति में आधार को सीमित करते हुए अनैतिक रूप से चुना जाता है, किन्तु सामान्य रूप से [[गणितीय प्रमाण]] की वैधता को प्रभावित नहीं करता है। चूँकि अन्य स्थिति पर्याप्त रूप से प्रस्तुत के समान हैं जो उन्हें सिद्ध करते हुए अनिवार्य रूप से ही तर्क का पालन करते हैं।<ref>{{cite book|first1=Gary|last1=Chartrand|author1-link=Gary Chartrand|first2=Albert D.|last2=Polimeni|first3=Ping|last3=Zhang|author3-link=Ping Zhang (graph theorist)|title=Mathematical Proofs / A Transition to Advanced Mathematics|edition=2nd|publisher=Pearson/Addison Wesley|year=2008|isbn=978-0-321-39053-0|pages=80–81}}</ref> अतः परिणाम स्वरुप, प्रत्येक बार विशेष स्थिति के लिए प्रमाण दिया जाता है और यह अन्य सभी स्थितियों में निष्कर्ष सिद्ध करने के लिए इसे अनुकूलित करने के लिए [[तुच्छ (गणित)]] होता है। | ||
सामान्यतः अनेक परिदृश्यों में, [[समरूपता]] की उपस्थिति से व्यापकता के हानि के बिना का उपयोग संभव हो जाता है।<ref>{{cite book | last = Dijkstra | first = Edsger W. | author-link = Edsger W. Dijkstra | editor1-last = Broy | editor1-first = Manfred | editor2-last = Schieder | editor2-first = Birgit | contribution = WLOG, or the misery of the unordered pair (EWD1223) | doi = 10.1007/978-3-642-60858-2_9 | pages = 33–34 | publisher = Springer | series = NATO ASI Series F: Computer and Systems Sciences | title = कार्यक्रम विकास में गणितीय तरीके| url = https://www.cs.utexas.edu/~EWD/ewd12xx/EWD1223.PDF | volume = 158 | year = 1997}}</ref> उदाहरण के लिए, यदि [[वास्तविक संख्या|वास्तविक संख्याओं]] के कुछ गुण P(x, y) को x और y में सममित के रूप में जाना जाता है, अर्थात् P(x, y) P(y ,x) के समतुल्य होता है, तब सिद्ध करने में कि P(x, y) प्रत्येक x और y के लिए मान्य होता है, अतः कोई भी व्यापकता को खोए बिना यह मान सकता है कि x ≤ y होता है। इस धारणा में व्यापकता की कोई हानि नहीं होती है, जिससे कि प्रत्येक बार स्थिति x ≤ y ⇒ P(x, y) सामग्री सशर्त सिद्ध हो गया है, अतः अन्य स्थिति x और y : y ≤ x ⇒ P(y, x) और P की समरूपता से, इसका तात्पर्य P(x, y) से है, जिससे यह पता चलता है कि P (x, y) सभी स्थितियों के लिए क्रियान्वित होता है। | |||
दूसरी ओर, यदि न तो इस | दूसरी ओर, यदि न तो इस प्रकार की समरूपता और न ही तुल्यता का कोई अन्य रूप स्थापित किया जा सकता है, तब व्यापकता के हानि के बिना का उपयोग गलत होता है और उदाहरण के रूप पर प्रमाण के उदाहरण के समान्तर हो सकता है - प्रमाण को सिद्ध करके प्रामाणित सिद्ध करने की तार्किक गिरावट गैर-प्रतिनिधि उदाहरण है।<ref>{{Cite web|url=https://www.cut-the-knot.org/m/Algebra/AcyclicInequalityInThreeVariables.shtml|title=तीन चरों में एक चक्रीय असमानता|website=www.cut-the-knot.org|access-date=2019-10-21}}</ref> | ||
== उदाहरण == | == उदाहरण == | ||
निम्नलिखित [[प्रमेय]] पर विचार | निम्नलिखित [[प्रमेय]] पर विचार करते है (जो कबूतरबाजी सिद्धांत की स्थिति है)। | ||
{{quote|यदि तीन वस्तुओं में से प्रत्येक को लाल या नीले रंग से रंगा गया है, | {{quote|यदि तीन वस्तुओं में से प्रत्येक को लाल या नीले रंग से रंगा गया है, तब एकल रंग की कम से कम दो वस्तुएं होती है।}} | ||
कोई प्रमाण: | कोई प्रमाण: | ||
{{quote|व्यापकता खोए बिना मान | {{quote|व्यापकता खोए बिना मान लीजिए कि पहली वस्तु लाल है। यदि अन्य दो वस्तुओं में से कोई भी लाल होती है, तब हम समाप्त हो गए, यदि नहीं, तब अन्य दो वस्तुएँ नीली होती है और हम अभी भी समाप्त हैं।|sign=|source=}} | ||
उपरोक्त तर्क | उपरोक्त तर्क कार्य करता है जिससे कि ठीक उसी तर्क को क्रियान्वित किया जा सकता है यदि वैकल्पिक धारणा, अर्थात् पहली वस्तु नीली है, बनाई गई थी, या इसी प्रकार शब्द 'लाल' और 'नीला' शब्दों के स्वतंत्र रूप से आदान-प्रदान किया जा सकता है। इस प्रकार प्रमाण का परिणाम स्वरुप, सामान्यता के हानि के बिना का उपयोग इस स्थिति में मान्य होता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 10:59, 5 July 2023
व्यापकता की हानि के बिना (अधिकांशतः डब्ल्यूओएलओजी, व्लॉग का संक्षिप्त रूप[1] या डब्ल्यू.एल.ओ.जी., सामान्यतः बिना किसी हानि के व्यापकता या बिना किसी हानि के बिना कम सामान्यतः कहा जाता है) गणित में अधिकांशतः उपयोग की जाने वाली अभिव्यक्ति होती है। इस शब्द का उपयोग उस धारणा को इंगित करने के लिए किया जाता है जो किसी विशेष स्थिति में आधार को सीमित करते हुए अनैतिक रूप से चुना जाता है, किन्तु सामान्य रूप से गणितीय प्रमाण की वैधता को प्रभावित नहीं करता है। चूँकि अन्य स्थिति पर्याप्त रूप से प्रस्तुत के समान हैं जो उन्हें सिद्ध करते हुए अनिवार्य रूप से ही तर्क का पालन करते हैं।[2] अतः परिणाम स्वरुप, प्रत्येक बार विशेष स्थिति के लिए प्रमाण दिया जाता है और यह अन्य सभी स्थितियों में निष्कर्ष सिद्ध करने के लिए इसे अनुकूलित करने के लिए तुच्छ (गणित) होता है।
सामान्यतः अनेक परिदृश्यों में, समरूपता की उपस्थिति से व्यापकता के हानि के बिना का उपयोग संभव हो जाता है।[3] उदाहरण के लिए, यदि वास्तविक संख्याओं के कुछ गुण P(x, y) को x और y में सममित के रूप में जाना जाता है, अर्थात् P(x, y) P(y ,x) के समतुल्य होता है, तब सिद्ध करने में कि P(x, y) प्रत्येक x और y के लिए मान्य होता है, अतः कोई भी व्यापकता को खोए बिना यह मान सकता है कि x ≤ y होता है। इस धारणा में व्यापकता की कोई हानि नहीं होती है, जिससे कि प्रत्येक बार स्थिति x ≤ y ⇒ P(x, y) सामग्री सशर्त सिद्ध हो गया है, अतः अन्य स्थिति x और y : y ≤ x ⇒ P(y, x) और P की समरूपता से, इसका तात्पर्य P(x, y) से है, जिससे यह पता चलता है कि P (x, y) सभी स्थितियों के लिए क्रियान्वित होता है।
दूसरी ओर, यदि न तो इस प्रकार की समरूपता और न ही तुल्यता का कोई अन्य रूप स्थापित किया जा सकता है, तब व्यापकता के हानि के बिना का उपयोग गलत होता है और उदाहरण के रूप पर प्रमाण के उदाहरण के समान्तर हो सकता है - प्रमाण को सिद्ध करके प्रामाणित सिद्ध करने की तार्किक गिरावट गैर-प्रतिनिधि उदाहरण है।[4]
उदाहरण
निम्नलिखित प्रमेय पर विचार करते है (जो कबूतरबाजी सिद्धांत की स्थिति है)।
यदि तीन वस्तुओं में से प्रत्येक को लाल या नीले रंग से रंगा गया है, तब एकल रंग की कम से कम दो वस्तुएं होती है।
कोई प्रमाण:
व्यापकता खोए बिना मान लीजिए कि पहली वस्तु लाल है। यदि अन्य दो वस्तुओं में से कोई भी लाल होती है, तब हम समाप्त हो गए, यदि नहीं, तब अन्य दो वस्तुएँ नीली होती है और हम अभी भी समाप्त हैं।
उपरोक्त तर्क कार्य करता है जिससे कि ठीक उसी तर्क को क्रियान्वित किया जा सकता है यदि वैकल्पिक धारणा, अर्थात् पहली वस्तु नीली है, बनाई गई थी, या इसी प्रकार शब्द 'लाल' और 'नीला' शब्दों के स्वतंत्र रूप से आदान-प्रदान किया जा सकता है। इस प्रकार प्रमाण का परिणाम स्वरुप, सामान्यता के हानि के बिना का उपयोग इस स्थिति में मान्य होता है।
यह भी देखें
संदर्भ
- ↑ "व्यापकता के नुकसान के बिना". Art of Problem Solving. Retrieved 2019-10-21.
- ↑ Chartrand, Gary; Polimeni, Albert D.; Zhang, Ping (2008). Mathematical Proofs / A Transition to Advanced Mathematics (2nd ed.). Pearson/Addison Wesley. pp. 80–81. ISBN 978-0-321-39053-0.
- ↑ Dijkstra, Edsger W. (1997). "WLOG, or the misery of the unordered pair (EWD1223)". In Broy, Manfred; Schieder, Birgit (eds.). कार्यक्रम विकास में गणितीय तरीके (PDF). NATO ASI Series F: Computer and Systems Sciences. Vol. 158. Springer. pp. 33–34. doi:10.1007/978-3-642-60858-2_9.
- ↑ "तीन चरों में एक चक्रीय असमानता". www.cut-the-knot.org. Retrieved 2019-10-21.