लैग्रेंजियन प्रणाली: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 16:22, 13 July 2023

गणित में लैग्रेंजियन प्रणाली (Y, L) की ऐसी जोड़ी है, जो मुख्य रूप से किसी समतल फाइबर समूह से युक्त YX और लैग्रेंजियन घनत्व L वाले अनुभागों पर कार्य करने वाले यूलर लैग्रेंज विभेदक ऑपरेटर YX को उत्पन्न करता है।

मौलिक यांत्रिकी में, कई गतिशील प्रणालियाँ मुख्य रूप से लैग्रेंजियन प्रणालियाँ होती हैं। ऐसी लैग्रेंजियन प्रणाली का कॉन्फ़िगरेशन क्षेत्र Q → ℝ फाइबर समूह प्रकार का है, इस प्रकार किसी समय अक्ष पर . को विशेष रूप से, Q = ℝ × M रूप से प्रदर्शित करते हैं, इसके लिए संदर्भ फ़्रेम तय किया जाता है। इसके आधार पर मौलिक क्षेत्र सिद्धांत में, सभी क्षेत्र प्रणालियाँ लैग्रेंजियन प्रकार की होती हैं।

लैग्रेंजियन और यूलर-लैग्रेंज ऑपरेटर

लैग्रेंजियन घनत्व L (या, बस, लैग्रेंजियन (क्षेत्र सिद्धांत)) क्रम का r प्रारूप बाहरी रूप के लिये परिभाषित किया जाता है। इस प्रकार n-प्रपत्र, n = dim X, पर r-ऑर्डर जेट समूह JrY के लिए Y प्रकार का हैं।

लैग्रेंजियन L को विभेदक श्रेणीबद्ध बीजगणित के वैरिएबल बाइकॉम्प्लेक्स के तत्व के रूप में प्रस्तुत किया जाता है, जिसके आधार पर O(Y) जेट समूह पर विभेदक रूप का YX हैं। इस प्रकार बाइकोकॉम्प्लेक्स के सह-समरूपता में वैरिएबल ऑपरेटर δ उपस्थित रहता है, जिस पर L प्रक्रिया की जाती है, इससे संबंधित यूलर-लैग्रेंज ऑपरेटर को δL परिभाषित करता है।

निर्देशांक

दिए गए समूह निर्देशांक xλ, yi फाइबर समूह पर Y और अनुकूलित निर्देशांक xλ, yi, yiΛ, (Λ = (λ1, ...,λk), |Λ| = kr) जेट मैनिफोल्ड्स पर JrY, लैग्रेंजियन L और इसका यूलर-लैग्रेंज ऑपरेटर रीड करता है, जो इस प्रकार हैं-

जहाँ

कुल डेरिवेटिव को निरूपित करता हैं।

उदाहरण के लिए, प्रथम-क्रम के लैग्रेंजियन और उसके दूसरे-क्रम वाले यूलर-लैग्रेंज ऑपरेटर फॉर्म करते हैं।

यूलर-लैग्रेंज समीकरण

यूलर-लैग्रेंज ऑपरेटर का कर्नेल यूलर-लैग्रेंज समीकरण δL = 0 प्रदान करता है।

कोहोमोलॉजी और नोएदर प्रमेय

वैरिएबल बायोकॉम्प्लेक्स की सह-समरूपता प्रमाण की ओर ले जाती है, इस प्रकार परिवर्तनशील सूत्र इस प्रकार होगा-

जहाँ

यह इसका कुल अंतर है, और θL लेपेज L के समान पाया जाता है, इस प्रकार नोएथर की पहली प्रमेय और नोएथर की दूसरी प्रमेय इस परिवर्तनशील सूत्र का परिणाम देती हैं।

वर्गीकृत अनेक गुना

ग्रेडेड मैनिफोल्ड्स तक विस्तारित होने वाले वेरिएबल बाइकोप्लेक्स सम और विषम वैरियेबल के ग्रेडेड लैग्रेंजियन प्रणाली का विवरण प्रदान करता है।[1]

वैकल्पिक सूत्रीकरण

भिन्न प्रकार की विधि से लैग्रेंजियन, यूलर-लैग्रेंज ऑपरेटर्स और यूलर-लैग्रेंज समीकरणों को विविधताओं के कलन के संरचना में प्रस्तुत किया जाता है।

मौलिक यांत्रिकी

मौलिक यांत्रिकी में गति के समीकरण मैनिफोल्ड पर पहले और दूसरे क्रम के अंतर समीकरण होते हैं, यहा पर M या विभिन्न फाइबर समूह Q इसके ऊपरी मान . की गति के समीकरणों से प्राप्त होने वाले मान को इसकी गति द्वारा प्राप्त किया जाता है।[2][3]

यह भी देखें

संदर्भ

  • Arnold, V. I. (1989), Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60 (second ed.), Springer-Verlag, ISBN 0-387-96890-3
  • Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (1997). New Lagrangian and Hamiltonian Methods in Field Theory. World Scientific. ISBN 981-02-1587-8.
  • Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (2011). Geometric formulation of classical and quantum mechanics. World Scientific. doi:10.1142/7816. hdl:11581/203967. ISBN 978-981-4313-72-8.
  • Olver, P. (1993). Applications of Lie Groups to Differential Equations (2 ed.). Springer-Verlag. ISBN 0-387-94007-3.
  • Sardanashvily, G. (2013). "Graded Lagrangian formalism". Int. J. Geom. Methods Mod. Phys. World Scientific. 10 (5): 1350016. arXiv:1206.2508. doi:10.1142/S0219887813500163. ISSN 0219-8878.

बाहरी संबंध