प्रतिबिम्ब सूत्र: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 16:28, 13 July 2023


गणित में, किसी फलन (गणित) f के लिए प्रतिबिंब सूत्र या प्रतिबिंब संबंध f(ax) और f(x) के मध्य एक संबंध है। यह एक कार्यात्मक समीकरण का एक विशेष स्तिथि है, और साहित्य में "प्रतिबिंब सूत्र" का अर्थ होने पर "कार्यात्मक समीकरण" शब्द का उपयोग करना अधिक समान माना जाता है।

इस प्रकार से परावर्तन सूत्र विशेष फलन के संख्यात्मक विश्लेषण के लिए उपयोगी होते हैं। वास्तव में, अनुमान जिसमें अधिक स्पष्ट होते है या केवल प्रतिबिंब बिंदु के तरफ (सामान्यतः जटिल विमान के सकारात्मक आधे भाग में) अभिसरण होता है, सभी विधियों के लिए नियोजित किया जा सकता है।

ज्ञात सूत्र

सम और विषम फलन a = 0 के आस-पास परिभाषा के सरल प्रतिबिंब संबंधों को संतुष्ट करते हैं। सभी सम फलनों के लिए,

और सभी विषम फलन के लिए,

प्रसिद्ध संबंध यूलर का प्रतिबिंब सूत्र इस प्रकार से है

लियोनहार्ड यूलर के कारण गामा फलन , के लिए।

सामान्य n-th क्रम पॉलीगामा फलन ψ(n)(z), के लिए एक प्रतिबिंब सूत्र भी है

जोकी इस तथ्य के आसमान रूप से उत्पन्न होता है कि पॉलीगामा फलन को व्युत्पन्न के रूप में परिभाषित किया गया है और इस प्रकार प्रतिबिंब सूत्र प्राप्त होता है।

रीमैन ज़ेटा फलन ζ(z) संतुष्ट करता है

और रीमैन शी समारोह ξ(z) संतुष्ट करता है

संदर्भ

  • Weisstein, Eric W. "Reflection Relation". MathWorld.
  • Weisstein, Eric W. "Polygamma Function". MathWorld.