संयुग्म फूरियर श्रृंखला: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 14: Line 14:


:<math>\tilde{f}(\theta) = \sum_{n=1}^\infty \left(a_n\sin n\theta - b_n\cos n\theta\right).</math>
:<math>\tilde{f}(\theta) = \sum_{n=1}^\infty \left(a_n\sin n\theta - b_n\cos n\theta\right).</math>
 
==यह भी देखें                                                               ==
'''ल्पनिक भाग तब संयुग्म श्रृंखला को परिभाषित करता है। ज़िगमंड (1968)'''
==यह भी देखें                                                                                           ==
* [[हार्मोनिक संयुग्म]]
* [[हार्मोनिक संयुग्म]]



Revision as of 14:24, 8 July 2023


फूरियर विश्लेषण के गणितीय क्षेत्र में, यूनिट डिस्क पर एक होलोमोर्फिक फलन के वास्तविक भाग के सीमा मूल्यों के रूप में औपचारिक रूप से फूरियर श्रृंखला को साकार करने से संयुग्मित फूरियर श्रृंखला उत्पन्न होती है। उस फलन का काल्पनिक भाग तब संयुग्म श्रृंखला को परिभाषित करता है। ज़िगमंड (1968) ने इस श्रृंखला के अभिसरण के आलोचनात्मक प्रश्नों और हिल्बर्ट परिवर्तन के साथ इसके संबंध का अध्ययन किया गया था।

प्रपत्र की त्रिकोणमितीय श्रृंखला पर विस्तार से विचार करें

जिसमें गुणांक an और bn वास्तविक संख्याएँ हैं। यह श्रृंखला पावर श्रृंखला का असली भाग है


के साथ यूनिट सर्कल के साथ। F(z) के काल्पनिक भाग को f की संयुग्मी श्रृंखला कहा जाता है, और इसे दर्शाया जाता है

यह भी देखें

संदर्भ

  • Grafakos, Loukas (2008), Classical Fourier analysis, Graduate Texts in Mathematics, vol. 249 (2nd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-0-387-09432-8, ISBN 978-0-387-09431-1, MR 2445437
  • Zygmund, Antoni (1968), Trigonometric Series (2nd ed.), Cambridge University Press (published 1988), ISBN 978-0-521-35885-9