भागों द्वारा योग: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Theorem to simplify sums of products of sequences}} {{Redirect|Abel transformation|another transformation|Abel transform}} गणित में, भा...")
 
No edit summary
Line 1: Line 1:
{{Short description|Theorem to simplify sums of products of sequences}}
{{Short description|Theorem to simplify sums of products of sequences}}गणित में, भागों द्वारा [[योग]] अनुक्रमों के उत्पादों के योग को अन्य योगों में बदल देता है, जिससे अक्सर गणना या (विशेष रूप से) कुछ प्रकार के योगों का अनुमान सरल हो जाता है। इसे एबेल लेम्मा या एबेल ट्रांसफॉर्मेशन भी कहा जाता है, जिसका नाम [[नील्स हेनरिक एबेल]] के नाम पर रखा गया है जिन्होंने इसे 1826 में पेश किया था।<ref>{{cite journal |journal=Advances in Applied Mathematics |volume=39 |issue=4 |year=2007 |pages=490-514 |title= भागों और बुनियादी हाइपरजियोमेट्रिक श्रृंखला द्वारा योग पर एबेल की लेम्मा|first=Wenchang |last=Chu |doi=10.1016/j.aam.2007.02.001|doi-access=free }}</ref>
{{Redirect|Abel transformation|another transformation|Abel transform}}
 
गणित में, भागों द्वारा [[योग]] अनुक्रमों के उत्पादों के योग को अन्य योगों में बदल देता है, जिससे अक्सर गणना या (विशेष रूप से) कुछ प्रकार के योगों का अनुमान सरल हो जाता है। इसे एबेल लेम्मा या एबेल ट्रांसफॉर्मेशन भी कहा जाता है, जिसका नाम [[नील्स हेनरिक एबेल]] के नाम पर रखा गया है जिन्होंने इसे 1826 में पेश किया था।<ref>{{cite journal |journal=Advances in Applied Mathematics |volume=39 |issue=4 |year=2007 |pages=490-514 |title= भागों और बुनियादी हाइपरजियोमेट्रिक श्रृंखला द्वारा योग पर एबेल की लेम्मा|first=Wenchang |last=Chu |doi=10.1016/j.aam.2007.02.001|doi-access=free }}</ref>
 
 
==कथन==
==कथन==
कल्पना करना <math>\{f_k\}</math> और <math>\{g_k\}</math> दो क्रम हैं. तब,
कल्पना करना <math>\{f_k\}</math> और <math>\{g_k\}</math> दो क्रम हैं. तब,
Line 46: Line 41:
==विधि==
==विधि==


दो दिए गए अनुक्रमों के लिए <math>(a_n) </math> और <math>(b_n) </math>, साथ <math>n \in \N</math>, कोई निम्नलिखित श्रृंखला के योग का अध्ययन करना चाहता है: <math display="block">S_N = \sum_{n=0}^N a_n b_n</math>
दो दिए गए अनुक्रमों के लिए <math>(a_n) </math> और <math>(b_n) </math>, साथ <math>n \in \N</math>, कोई निम्नलिखित श्रृंखला के योग का अध्ययन करना चाहता है:<math display="block">S_N = \sum_{n=0}^N a_n b_n</math>यदि हम परिभाषित करें <math display="inline">B_n = \sum_{k=0}^n b_k,</math> फिर हर एक के लिए <math>n>0, </math> <math>b_n = B_n - B_{n-1} </math> और<math display="block">S_N = a_0 b_0 + \sum_{n=1}^N a_n (B_n - B_{n-1}),</math><math display="block">S_N = a_0 b_0 - a_1 B_0 + a_N B_N + \sum_{n=1}^{N-1} B_n (a_n - a_{n+1}).</math>  
यदि हम परिभाषित करें <math display="inline">B_n = \sum_{k=0}^n b_k,</math> फिर हर एक के लिए <math>n>0, </math> <math>b_n = B_n - B_{n-1} </math> और
 
<math display="block">S_N = a_0 b_0 + \sum_{n=1}^N a_n (B_n - B_{n-1}),</math>
 
<math display="block">S_N = a_0 b_0 - a_1 B_0 + a_N B_N + \sum_{n=1}^{N-1} B_n (a_n - a_{n+1}).</math>
आखिरकार <math display="inline">S_N = a_N B_N - \sum_{n=0}^{N-1} B_n (a_{n+1} - a_n).</math>
आखिरकार <math display="inline">S_N = a_N B_N - \sum_{n=0}^{N-1} B_n (a_{n+1} - a_n).</math>
इस प्रक्रिया, जिसे एबेल परिवर्तन कहा जाता है, का उपयोग अभिसरण के कई मानदंडों को साबित करने के लिए किया जा सकता है <math>S_N </math>.
इस प्रक्रिया, जिसे एबेल परिवर्तन कहा जाता है, का उपयोग अभिसरण के कई मानदंडों को साबित करने के लिए किया जा सकता है <math>S_N </math>.
Line 68: Line 62:
* हाबिल के परीक्षण को सिद्ध करने के लिए कोई इस तकनीक का उपयोग भी कर सकता है: यदि <math display="inline">\sum_n b_n</math> एक [[अभिसरण श्रृंखला]] है, और <math>a_n</math> फिर, एक बंधा हुआ [[मोनोटोन अनुक्रम]] <math display="inline">S_N = \sum_{n=0}^N a_n b_n</math> जुटता है.
* हाबिल के परीक्षण को सिद्ध करने के लिए कोई इस तकनीक का उपयोग भी कर सकता है: यदि <math display="inline">\sum_n b_n</math> एक [[अभिसरण श्रृंखला]] है, और <math>a_n</math> फिर, एक बंधा हुआ [[मोनोटोन अनुक्रम]] <math display="inline">S_N = \sum_{n=0}^N a_n b_n</math> जुटता है.


हाबिल के परीक्षण का प्रमाण. भागों द्वारा योग प्राप्त होता है
हाबिल के परीक्षण का प्रमाण. भागों द्वारा योग प्राप्त होता है<math display="block">\begin{align}
<math display="block">\begin{align}
S_M - S_N &= a_M B_M - a_N B_N - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n)\\
S_M - S_N &= a_M B_M - a_N B_N - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n)\\
&= (a_M-a) B_M - (a_N-a) B_N + a(B_M - B_N) - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n),
&= (a_M-a) B_M - (a_N-a) B_N + a(B_M - B_N) - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n),
\end{align}</math>
\end{align}</math>
जहां a की सीमा है <math>a_n</math>. जैसा <math display="inline">\sum_n b_n</math> अभिसरण है, <math>B_N</math> से स्वतंत्र रूप से घिरा हुआ है <math>N</math>, द्वारा कहो <math>B</math>. जैसा <math>a_n-a</math> शून्य पर जाएं, इसलिए पहले दो पदों पर जाएं। [[कॉची मानदंड]] के अनुसार तीसरा पद शून्य हो जाता है <math display="inline">\sum_n b_n</math>. शेष राशि परिबद्ध है
जहां a की सीमा है <math>a_n</math>. जैसा <math display="inline">\sum_n b_n</math> अभिसरण है, <math>B_N</math> से स्वतंत्र रूप से घिरा हुआ है <math>N</math>, द्वारा कहो <math>B</math>. जैसा <math>a_n-a</math> शून्य पर जाएं, इसलिए पहले दो पदों पर जाएं। [[कॉची मानदंड]] के अनुसार तीसरा पद शून्य हो जाता है <math display="inline">\sum_n b_n</math>. शेष राशि परिबद्ध है
<math display="block">\sum_{n=N}^{M-1} |B_n| |a_{n+1}-a_n| \le B \sum_{n=N}^{M-1} |a_{n+1}-a_n| = B|a_N - a_M|</math>
<math display="block">\sum_{n=N}^{M-1} |B_n| |a_{n+1}-a_n| \le B \sum_{n=N}^{M-1} |a_{n+1}-a_n| = B|a_N - a_M|</math>
Line 83: Line 78:
तब <math display="inline">S_N = \sum_{n=0}^N a_n b_n</math> जुटता है.
तब <math display="inline">S_N = \sum_{n=0}^N a_n b_n</math> जुटता है.


दोनों ही मामलों में, श्रृंखला का योग संतुष्ट करता है:<math display="block"> |S| = \left|\sum_{n=0}^\infty a_n b_n \right| \le B \sum_{n=0}^\infty |a_{n+1}-a_n|.</math>
दोनों ही मामलों में, श्रृंखला का योग संतुष्ट करता है:<math display="block"> |S| = \left|\sum_{n=0}^\infty a_n b_n \right| \le B \sum_{n=0}^\infty |a_{n+1}-a_n|.</math>उच्च क्रम परिमित अंतर विधियों के लिए योग-दर-भाग ऑपरेटर




== उच्च क्रम परिमित अंतर विधियों के लिए योग-दर-भाग ऑपरेटर ==
एक योग-दर-भाग (एसबीपी) परिमित अंतर ऑपरेटर पारंपरिक रूप से एक केंद्रित अंतर आंतरिक योजना और विशिष्ट सीमा स्टेंसिल से बना होता है जो संबंधित एकीकरण-दर-भाग फॉर्मूलेशन के व्यवहार की नकल करता है।<ref>{{Cite journal| last=Strand|first=Bo|date=January 1994|title=Summation by Parts for Finite Difference Approximations for d/dx|journal=Journal of Computational Physics|volume=110|issue=1|pages=47–67|doi=10.1006/jcph.1994.1005}}</ref><ref>{{Cite journal|last=Mattsson| first=Ken| last2=Nordström|first2=Jan|date=September 2004|title=दूसरे डेरिवेटिव के परिमित अंतर सन्निकटन के लिए भाग संचालकों द्वारा योग|journal=Journal of Computational Physics|volume=199|issue=2|pages=503–540|doi=10.1016/j.jcp.2004.03.001}}</ref> सीमा शर्तें आमतौर पर एक साथ-सन्निकटन-अवधि (SAT) तकनीक द्वारा लगाई जाती हैं।<ref>{{Cite journal| last=Carpenter|first=Mark H.|last2=Gottlieb|first2=David|last3=Abarbanel|first3=Saul|date=April 1994|title=Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes|journal=Journal of Computational Physics|volume=111|issue=2| pages=220–236|doi=10.1006/jcph.1994.1057| citeseerx=10.1.1.465.603}}</ref> एसबीपी-एसएटी का संयोजन सीमा उपचार के लिए एक शक्तिशाली ढांचा है। लंबे समय तक सिमुलेशन के लिए अच्छी तरह से सिद्ध स्थिरता और सटीकता के उच्च क्रम के लिए विधि को प्राथमिकता दी जाती है।
एक योग-दर-भाग (एसबीपी) परिमित अंतर ऑपरेटर पारंपरिक रूप से एक केंद्रित अंतर आंतरिक योजना और विशिष्ट सीमा स्टेंसिल से बना होता है जो संबंधित एकीकरण-दर-भाग फॉर्मूलेशन के व्यवहार की नकल करता है।<ref>{{Cite journal| last=Strand|first=Bo|date=January 1994|title=Summation by Parts for Finite Difference Approximations for d/dx|journal=Journal of Computational Physics|volume=110|issue=1|pages=47–67|doi=10.1006/jcph.1994.1005}}</ref><ref>{{Cite journal|last=Mattsson| first=Ken| last2=Nordström|first2=Jan|date=September 2004|title=दूसरे डेरिवेटिव के परिमित अंतर सन्निकटन के लिए भाग संचालकों द्वारा योग|journal=Journal of Computational Physics|volume=199|issue=2|pages=503–540|doi=10.1016/j.jcp.2004.03.001}}</ref> सीमा शर्तें आमतौर पर एक साथ-सन्निकटन-अवधि (SAT) तकनीक द्वारा लगाई जाती हैं।<ref>{{Cite journal| last=Carpenter|first=Mark H.|last2=Gottlieb|first2=David|last3=Abarbanel|first3=Saul|date=April 1994|title=Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes|journal=Journal of Computational Physics|volume=111|issue=2| pages=220–236|doi=10.1006/jcph.1994.1057| citeseerx=10.1.1.465.603}}</ref> एसबीपी-एसएटी का संयोजन सीमा उपचार के लिए एक शक्तिशाली ढांचा है। लंबे समय तक सिमुलेशन के लिए अच्छी तरह से सिद्ध स्थिरता और सटीकता के उच्च क्रम के लिए विधि को प्राथमिकता दी जाती है।


Line 100: Line 94:
{{Reflist}}
{{Reflist}}


 
ग्रन्थसूची
 
 
===ग्रन्थसूची===
* {{cite journal |first=Niels Henrik |last=Abel |authorlink= Niels Henrik Abel |title=Untersuchungen über die Reihe <math>1+ \frac{m}{x} + \frac{m\cdot (m-1)}{2\cdot 1} x^2 + \frac{m\cdot (m-1)\cdot (m-2)}{3\cdot 2\cdot 1} x^3 + \ldots</math> u.s.w. |journal=[[J. Reine Angew. Math.]] |volume=1 |year=1826 |pages=311–339}}
* {{cite journal |first=Niels Henrik |last=Abel |authorlink= Niels Henrik Abel |title=Untersuchungen über die Reihe <math>1+ \frac{m}{x} + \frac{m\cdot (m-1)}{2\cdot 1} x^2 + \frac{m\cdot (m-1)\cdot (m-2)}{3\cdot 2\cdot 1} x^3 + \ldots</math> u.s.w. |journal=[[J. Reine Angew. Math.]] |volume=1 |year=1826 |pages=311–339}}
[[Category: संक्षेपण विधियाँ]] [[Category: वास्तविक विश्लेषण]] [[Category: बीजगणित में लेम्मास]]  
[[Category: संक्षेपण विधियाँ]] [[Category: वास्तविक विश्लेषण]] [[Category: बीजगणित में लेम्मास]]  

Revision as of 17:52, 7 July 2023

गणित में, भागों द्वारा योग अनुक्रमों के उत्पादों के योग को अन्य योगों में बदल देता है, जिससे अक्सर गणना या (विशेष रूप से) कुछ प्रकार के योगों का अनुमान सरल हो जाता है। इसे एबेल लेम्मा या एबेल ट्रांसफॉर्मेशन भी कहा जाता है, जिसका नाम नील्स हेनरिक एबेल के नाम पर रखा गया है जिन्होंने इसे 1826 में पेश किया था।[1]

कथन

कल्पना करना और दो क्रम हैं. तब,

फॉरवर्ड डिफरेंस ऑपरेटर का उपयोग करना , इसे और अधिक संक्षेप में कहा जा सकता है

भागों द्वारा योग, भागों द्वारा एकीकरण के समान है:

या हाबिल के सारांश सूत्र के लिए:

एक वैकल्पिक कथन है

जो द्विघात भिन्नता#सेमीमार्टिंगेल्स के अनुरूप है।

हालाँकि अनुप्रयोग लगभग हमेशा अनुक्रमों के अभिसरण से निपटते हैं, कथन पूरी तरह से बीजगणितीय है और किसी भी क्षेत्र (गणित) में काम करेगा। यह तब भी काम करेगा जब एक अनुक्रम सदिश समष्टि में हो, और दूसरा अदिश के संबंधित क्षेत्र में हो।

न्यूटन श्रृंखला

सूत्र कभी-कभी इनमें से किसी एक - थोड़े भिन्न - रूप में दिया जाता है

जो एक विशेष मामले का प्रतिनिधित्व करता है () अधिक सामान्य नियम का

दोनों प्रारंभिक सूत्र के पुनरावृत्त अनुप्रयोग का परिणाम हैं। सहायक मात्राएँ न्यूटन श्रृंखला हैं:

और

एक विशेष ()परिणाम ही पहचान है

यहाँ, द्विपद गुणांक है.

विधि

दो दिए गए अनुक्रमों के लिए और , साथ , कोई निम्नलिखित श्रृंखला के योग का अध्ययन करना चाहता है:

यदि हम परिभाषित करें फिर हर एक के लिए और


आखिरकार इस प्रक्रिया, जिसे एबेल परिवर्तन कहा जाता है, का उपयोग अभिसरण के कई मानदंडों को साबित करने के लिए किया जा सकता है .

भागों द्वारा एकीकरण के साथ समानता

भागों द्वारा एकीकरण का सूत्र है .

सीमा शर्तों के अलावा, हम देखते हैं कि पहले अभिन्न में दो गुणा कार्य शामिल हैं, एक जो अंतिम अभिन्न में एकीकृत है ( बन जाता है ) और एक जो विभेदित है ( बन जाता है ).

एबेल परिवर्तन की प्रक्रिया समान है, क्योंकि दो प्रारंभिक अनुक्रमों में से एक को संक्षेप में प्रस्तुत किया गया है ( बन जाता है ) और दूसरा अलग है ( बन जाता है ).

अनुप्रयोग

  • इसका उपयोग क्रोनकर के लेम्मा को साबित करने के लिए किया जाता है, जो बदले में, विचरण बाधाओं के तहत बड़ी संख्या के मजबूत कानून के एक संस्करण को साबित करने के लिए उपयोग किया जाता है।
  • इसका उपयोग वर्ग त्रिकोणीय संख्या को सिद्ध करने के लिए किया जा सकता है | निकोमैचस का प्रमेय कि पहले का योग घन पहले के योग के वर्ग के बराबर होता है सकारात्मक पूर्णांक।[2]
  • एबेल के प्रमेय और डिरिचलेट के परीक्षण को सिद्ध करने के लिए भागों द्वारा योग का अक्सर उपयोग किया जाता है।
  • हाबिल के परीक्षण को सिद्ध करने के लिए कोई इस तकनीक का उपयोग भी कर सकता है: यदि एक अभिसरण श्रृंखला है, और फिर, एक बंधा हुआ मोनोटोन अनुक्रम जुटता है.

हाबिल के परीक्षण का प्रमाण. भागों द्वारा योग प्राप्त होता है


जहां a की सीमा है . जैसा अभिसरण है, से स्वतंत्र रूप से घिरा हुआ है , द्वारा कहो . जैसा शून्य पर जाएं, इसलिए पहले दो पदों पर जाएं। कॉची मानदंड के अनुसार तीसरा पद शून्य हो जाता है . शेष राशि परिबद्ध है

की एकरसता से , और शून्य पर भी चला जाता है .

ऊपर बताए गए प्रमाण का उपयोग करके, कोई यह दिखा सकता है कि यदि

  1. आंशिक रकम स्वतंत्र रूप से एक बंधा हुआ अनुक्रम बनाएं ;
  2. (ताकि योग के रूप में शून्य हो जाता है अनंत तक जाता है)

तब जुटता है.

दोनों ही मामलों में, श्रृंखला का योग संतुष्ट करता है:

उच्च क्रम परिमित अंतर विधियों के लिए योग-दर-भाग ऑपरेटर


एक योग-दर-भाग (एसबीपी) परिमित अंतर ऑपरेटर पारंपरिक रूप से एक केंद्रित अंतर आंतरिक योजना और विशिष्ट सीमा स्टेंसिल से बना होता है जो संबंधित एकीकरण-दर-भाग फॉर्मूलेशन के व्यवहार की नकल करता है।[3][4] सीमा शर्तें आमतौर पर एक साथ-सन्निकटन-अवधि (SAT) तकनीक द्वारा लगाई जाती हैं।[5] एसबीपी-एसएटी का संयोजन सीमा उपचार के लिए एक शक्तिशाली ढांचा है। लंबे समय तक सिमुलेशन के लिए अच्छी तरह से सिद्ध स्थिरता और सटीकता के उच्च क्रम के लिए विधि को प्राथमिकता दी जाती है।

यह भी देखें

  • अभिसारी श्रृंखला
  • अपसारी श्रृंखला
  • भागों द्वारा एकीकरण
  • सिजेरो सारांश
  • हाबिल का प्रमेय
  • हाबिल का योग सूत्र

संदर्भ

  1. Chu, Wenchang (2007). "भागों और बुनियादी हाइपरजियोमेट्रिक श्रृंखला द्वारा योग पर एबेल की लेम्मा". Advances in Applied Mathematics. 39 (4): 490–514. doi:10.1016/j.aam.2007.02.001.
  2. Edmonds, Sheila M. (1957). "प्राकृतिक संख्याओं की घातों का योग". The Mathematical Gazette. 41 (337): 187–188. doi:10.2307/3609189. JSTOR 3609189. MR 0096615.
  3. Strand, Bo (January 1994). "Summation by Parts for Finite Difference Approximations for d/dx". Journal of Computational Physics. 110 (1): 47–67. doi:10.1006/jcph.1994.1005.
  4. Mattsson, Ken; Nordström, Jan (September 2004). "दूसरे डेरिवेटिव के परिमित अंतर सन्निकटन के लिए भाग संचालकों द्वारा योग". Journal of Computational Physics. 199 (2): 503–540. doi:10.1016/j.jcp.2004.03.001.
  5. Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul (April 1994). "Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes". Journal of Computational Physics. 111 (2): 220–236. CiteSeerX 10.1.1.465.603. doi:10.1006/jcph.1994.1057.

ग्रन्थसूची

  • Abel, Niels Henrik (1826). "Untersuchungen über die Reihe u.s.w.". J. Reine Angew. Math. 1: 311–339.