भागों द्वारा योग: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Theorem to simplify sums of products of sequences}}गणित में, '''भागों द्वारा [[योग]]''' अनुक्रमों के उत्पादों के योग को अन्य योगों में बदल देता है, जिससे अधिकांशतः गणना या (विशेष रूप से) कुछ प्रकार के योगों का अनुमान सरल हो जाता है। इस प्रकार इसे '''एबेल लेम्मा या एबेल ट्रांसफॉर्मेशन''' भी कहा जाता है, जिसका नाम [[नील्स हेनरिक एबेल]] के नाम पर रखा गया है जिन्होंने इसे साल 1826 में प्रस्तुत किया था।<ref>{{cite journal |journal=Advances in Applied Mathematics |volume=39 |issue=4 |year=2007 |pages=490-514 |title= भागों और बुनियादी हाइपरजियोमेट्रिक श्रृंखला द्वारा योग पर एबेल की लेम्मा|first=Wenchang |last=Chu |doi=10.1016/j.aam.2007.02.001|doi-access=free }}</ref> | {{Short description|Theorem to simplify sums of products of sequences}}गणित में, '''भागों द्वारा [[योग]]''' अनुक्रमों के उत्पादों के योग को अन्य योगों में बदल देता है, जिससे अधिकांशतः गणना या (विशेष रूप से) कुछ प्रकार के योगों का अनुमान सरल हो जाता है। इस प्रकार इसे '''एबेल लेम्मा या एबेल ट्रांसफॉर्मेशन''' भी कहा जाता है, जिसका नाम [[नील्स हेनरिक एबेल]] के नाम पर रखा गया है जिन्होंने इसे साल 1826 में प्रस्तुत किया था।<ref>{{cite journal |journal=Advances in Applied Mathematics |volume=39 |issue=4 |year=2007 |pages=490-514 |title= भागों और बुनियादी हाइपरजियोमेट्रिक श्रृंखला द्वारा योग पर एबेल की लेम्मा|first=Wenchang |last=Chu |doi=10.1016/j.aam.2007.02.001|doi-access=free }}</ref> | ||
==विवरण== | ==विवरण== | ||
कल्पना करना <math>\{f_k\}</math> और <math>\{g_k\}</math> दो अनुक्रम हैं. तब, | इस प्रकार कल्पना करना <math>\{f_k\}</math> और <math>\{g_k\}</math> दो अनुक्रम हैं. तब, | ||
:<math>\sum_{k=m}^n f_k(g_{k+1}-g_k) = \left(f_{n}g_{n+1} - f_m g_m\right) - \sum_{k=m+1}^n g_{k}(f_{k}- f_{k-1}).</math> | :<math>\sum_{k=m}^n f_k(g_{k+1}-g_k) = \left(f_{n}g_{n+1} - f_m g_m\right) - \sum_{k=m+1}^n g_{k}(f_{k}- f_{k-1}).</math> | ||
[[फॉरवर्ड डिफरेंस ऑपरेटर]] का उपयोग करना <math>\Delta</math>, इसे और अधिक संक्षेप में कहा जा सकता है | [[फॉरवर्ड डिफरेंस ऑपरेटर]] का उपयोग करना <math>\Delta</math>, इसे और अधिक संक्षेप में कहा जा सकता है | ||
Line 41: | Line 41: | ||
==विधि== | ==विधि== | ||
दो दिए गए अनुक्रमों के लिए <math>(a_n) </math> और <math>(b_n) </math>, साथ <math>n \in \N</math>, कोई निम्नलिखित श्रृंखला के योग का अध्ययन करना चाहता है:<math display="block">S_N = \sum_{n=0}^N a_n b_n</math>यदि हम परिभाषित करें <math display="inline">B_n = \sum_{k=0}^n b_k,</math> फिर हर एक के लिए <math>n>0, </math> <math>b_n = B_n - B_{n-1} </math> और<math display="block">S_N = a_0 b_0 + \sum_{n=1}^N a_n (B_n - B_{n-1}),</math><math display="block">S_N = a_0 b_0 - a_1 B_0 + a_N B_N + \sum_{n=1}^{N-1} B_n (a_n - a_{n+1}).</math>आखिरकार <math display="inline">S_N = a_N B_N - \sum_{n=0}^{N-1} B_n (a_{n+1} - a_n).</math> | इस प्रकार दो दिए गए अनुक्रमों के लिए <math>(a_n) </math> और <math>(b_n) </math>, साथ <math>n \in \N</math>, कोई निम्नलिखित श्रृंखला के योग का अध्ययन करना चाहता है:<math display="block">S_N = \sum_{n=0}^N a_n b_n</math>यदि हम परिभाषित करें <math display="inline">B_n = \sum_{k=0}^n b_k,</math> फिर हर एक के लिए <math>n>0, </math> <math>b_n = B_n - B_{n-1} </math> और<math display="block">S_N = a_0 b_0 + \sum_{n=1}^N a_n (B_n - B_{n-1}),</math><math display="block">S_N = a_0 b_0 - a_1 B_0 + a_N B_N + \sum_{n=1}^{N-1} B_n (a_n - a_{n+1}).</math>आखिरकार <math display="inline">S_N = a_N B_N - \sum_{n=0}^{N-1} B_n (a_{n+1} - a_n).</math> | ||
यह प्रक्रिया, जिसे एबेल परिवर्तन कहा जाता है, का उपयोग अभिसरण के अनेक मानदंडों को सिद्ध करने के लिए किया जा सकता | इस प्रकार यह प्रक्रिया, जिसे एबेल परिवर्तन कहा जाता है, का उपयोग <math>S_N </math> के लिए अभिसरण के अनेक मानदंडों को सिद्ध करने के लिए किया जा सकता हैं। | ||
==भागों द्वारा एकीकरण के साथ समानता== | ==भागों द्वारा एकीकरण के साथ समानता== | ||
Line 54: | Line 54: | ||
==अनुप्रयोग== | ==अनुप्रयोग== | ||
* इसका उपयोग क्रोनकर के लेम्मा को सिद्ध करने के लिए किया जाता है, जो बदले में, विचरण बाधाओं के अनुसार | * इसका उपयोग क्रोनकर के लेम्मा को सिद्ध करने के लिए किया जाता है, जो बदले में, विचरण बाधाओं के अनुसार बड़ी संख्या के मजबूत कानून के एक संस्करण को सिद्ध करने के लिए उपयोग किया जाता है। | ||
* इसका उपयोग निकोमैचस का प्रमेय को सिद्ध करने के लिए किया जा सकता है कि पहले | * इसका उपयोग निकोमैचस का प्रमेय को सिद्ध करने के लिए किया जा सकता है कि पहले <math>n</math> घनों का योग पहले <math>n</math> धनात्मक पूर्णांकों के योग के वर्ग के सामान्तर होता है।<ref>{{cite journal | last = Edmonds | first = Sheila M. | author-link = Sheila May Edmonds | doi = 10.2307/3609189 | journal = The Mathematical Gazette | jstor = 3609189 | mr = 96615 | pages = 187–188 | title = प्राकृतिक संख्याओं की घातों का योग| volume = 41 | year = 1957 | issue = 337 }}</ref> | ||
* एबेल के प्रमेय और डिरिचलेट के परीक्षण को सिद्ध करने के लिए भागों द्वारा योग का अधिकांशतः उपयोग किया जाता है। | * एबेल के प्रमेय और डिरिचलेट के परीक्षण को सिद्ध करने के लिए भागों द्वारा योग का अधिकांशतः उपयोग किया जाता है। | ||
* हाबिल के परीक्षण को सिद्ध करने के लिए कोई इस तकनीक का उपयोग भी कर सकता है: यदि <math display="inline">\sum_n b_n</math> एक [[अभिसरण श्रृंखला]] है, और <math>a_n</math> फिर, एक बंधा हुआ [[मोनोटोन अनुक्रम]] <math display="inline">S_N = \sum_{n=0}^N a_n b_n</math> जुटता है. | * हाबिल के परीक्षण को सिद्ध करने के लिए कोई इस तकनीक का उपयोग भी कर सकता है: यदि <math display="inline">\sum_n b_n</math> एक [[अभिसरण श्रृंखला]] है, और <math>a_n</math> फिर, एक बंधा हुआ [[मोनोटोन अनुक्रम]] <math display="inline">S_N = \sum_{n=0}^N a_n b_n</math> जुटता है. | ||
हाबिल के परीक्षण का प्रमाण | '''हाबिल के परीक्षण का प्रमाण''' भागों द्वारा योग प्राप्त होता है<math display="block">\begin{align} | ||
S_M - S_N &= a_M B_M - a_N B_N - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n)\\ | S_M - S_N &= a_M B_M - a_N B_N - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n)\\ | ||
&= (a_M-a) B_M - (a_N-a) B_N + a(B_M - B_N) - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n), | &= (a_M-a) B_M - (a_N-a) B_N + a(B_M - B_N) - \sum_{n=N}^{M-1} B_n (a_{n+1} - a_n), |
Revision as of 13:48, 9 July 2023
गणित में, भागों द्वारा योग अनुक्रमों के उत्पादों के योग को अन्य योगों में बदल देता है, जिससे अधिकांशतः गणना या (विशेष रूप से) कुछ प्रकार के योगों का अनुमान सरल हो जाता है। इस प्रकार इसे एबेल लेम्मा या एबेल ट्रांसफॉर्मेशन भी कहा जाता है, जिसका नाम नील्स हेनरिक एबेल के नाम पर रखा गया है जिन्होंने इसे साल 1826 में प्रस्तुत किया था।[1]
विवरण
इस प्रकार कल्पना करना और दो अनुक्रम हैं. तब,
फॉरवर्ड डिफरेंस ऑपरेटर का उपयोग करना , इसे और अधिक संक्षेप में कहा जा सकता है
भागों द्वारा योग, भागों द्वारा एकीकरण के समान है:
या हाबिल के सारांश सूत्र के लिए:
एक वैकल्पिक कथन है
इस प्रकार जो सेमीमार्टिंगेल्स के लिए भागों द्वारा एकीकरण के फार्मूले के अनुरूप है।
चूँकि अनुप्रयोग लगभग सदैव अनुक्रमों के अभिसरण से निपटते हैं, कथन पूरी तरह से बीजगणितीय है और किसी भी क्षेत्र में काम करेगा। इस प्रकार यह तब भी काम करेगा जब एक अनुक्रम सदिश समष्टि में हो और दूसरा अदिश के संबंधित क्षेत्र में हो।
न्यूटन श्रृंखला
सूत्र कभी-कभी इनमें से किसी एक - थोड़े भिन्न - रूप में दिया जाता है
जो एक विशेष स्थितियोंका प्रतिनिधित्व करता है () अधिक सामान्य नियम का
दोनों प्रारंभिक सूत्र के पुनरावृत्त अनुप्रयोग का परिणाम हैं। सहायक मात्राएँ न्यूटन श्रृंखला हैं:
और
एक विशेष ()परिणाम ही पहचान है
यहाँ, द्विपद गुणांक है.
विधि
इस प्रकार दो दिए गए अनुक्रमों के लिए और , साथ , कोई निम्नलिखित श्रृंखला के योग का अध्ययन करना चाहता है:
भागों द्वारा एकीकरण के साथ समानता
भागों द्वारा एकीकरण का सूत्र है .
सीमा शर्तों के अतिरिक्त, हम देखते हैं कि पहले अभिन्न में दो गुणा कार्य सम्मिलित हैं, एक जो अंतिम अभिन्न में एकीकृत है ( बन जाता है ) और एक जो विभेदित है ( बन जाता है ).
एबेल परिवर्तन की प्रक्रिया समान है, क्योंकि दो प्रारंभिक अनुक्रमों में से एक को संक्षेप में प्रस्तुत किया गया है ( बन जाता है ) और दूसरा भिन्न है ( बन जाता है ).
अनुप्रयोग
- इसका उपयोग क्रोनकर के लेम्मा को सिद्ध करने के लिए किया जाता है, जो बदले में, विचरण बाधाओं के अनुसार बड़ी संख्या के मजबूत कानून के एक संस्करण को सिद्ध करने के लिए उपयोग किया जाता है।
- इसका उपयोग निकोमैचस का प्रमेय को सिद्ध करने के लिए किया जा सकता है कि पहले घनों का योग पहले धनात्मक पूर्णांकों के योग के वर्ग के सामान्तर होता है।[2]
- एबेल के प्रमेय और डिरिचलेट के परीक्षण को सिद्ध करने के लिए भागों द्वारा योग का अधिकांशतः उपयोग किया जाता है।
- हाबिल के परीक्षण को सिद्ध करने के लिए कोई इस तकनीक का उपयोग भी कर सकता है: यदि एक अभिसरण श्रृंखला है, और फिर, एक बंधा हुआ मोनोटोन अनुक्रम जुटता है.
हाबिल के परीक्षण का प्रमाण भागों द्वारा योग प्राप्त होता है
ऊपर बताए गए प्रमाण का उपयोग करके, कोई यह दिखा सकता है कि यदि
- आंशिक रकम स्वतंत्र रूप से एक बंधा हुआ अनुक्रम बनाएं ;
- (जिससे कि योग के रूप में शून्य हो जाता है अनंत तक जाता है)
तब जुटता है.
दोनों ही स्थितियोंमें, श्रृंखला का योग संतुष्ट करता है:
उच्च क्रम परिमित अंतर विधियों के लिए योग-दर-भाग ऑपरेटर
एक सारांश-दर-भाग (एसबीपी) परिमित अंतर ऑपरेटर पारंपरिक रूप से एक केंद्रित अंतर आंतरिक योजना और विशिष्ट सीमा स्टेंसिल से बना होता है जो संबंधित एकीकरण-दर-भाग सूत्रीकरण के व्यवहार की नकल करता है।[3][4] सीमा शर्तें सामान्यतः एक साथ-सन्निकटन-अवधि (एसएटी) तकनीक द्वारा लागू की जाती हैं।[5] एसबीपी-एसएटी का संयोजन सीमा उपचार के लिए एक शक्तिशाली ढांचा है। इस प्रकार लंबे समय तक सिमुलेशन के लिए अच्छी तरह से सिद्ध स्थिरता और त्रुटिहीनता के उच्च क्रम के लिए विधि को प्राथमिकता दी जाती है।
यह भी देखें
- अभिसारी श्रृंखला
- अपसारी श्रृंखला
- भागों द्वारा एकीकरण
- सिजेरो सारांश
- हाबिल का प्रमेय
- हाबिल का योग सूत्र
संदर्भ
- ↑ Chu, Wenchang (2007). "भागों और बुनियादी हाइपरजियोमेट्रिक श्रृंखला द्वारा योग पर एबेल की लेम्मा". Advances in Applied Mathematics. 39 (4): 490–514. doi:10.1016/j.aam.2007.02.001.
- ↑ Edmonds, Sheila M. (1957). "प्राकृतिक संख्याओं की घातों का योग". The Mathematical Gazette. 41 (337): 187–188. doi:10.2307/3609189. JSTOR 3609189. MR 0096615.
- ↑ Strand, Bo (January 1994). "Summation by Parts for Finite Difference Approximations for d/dx". Journal of Computational Physics. 110 (1): 47–67. doi:10.1006/jcph.1994.1005.
- ↑ Mattsson, Ken; Nordström, Jan (September 2004). "दूसरे डेरिवेटिव के परिमित अंतर सन्निकटन के लिए भाग संचालकों द्वारा योग". Journal of Computational Physics. 199 (2): 503–540. doi:10.1016/j.jcp.2004.03.001.
- ↑ Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul (April 1994). "Time-Stable Boundary Conditions for Finite-Difference Schemes Solving Hyperbolic Systems: Methodology and Application to High-Order Compact Schemes". Journal of Computational Physics. 111 (2): 220–236. CiteSeerX 10.1.1.465.603. doi:10.1006/jcph.1994.1057.
ग्रन्थसूची
- Abel, Niels Henrik (1826). "Untersuchungen über die Reihe u.s.w.". J. Reine Angew. Math. 1: 311–339.