केम्पनर फंक्शन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[File:SmarandacheFunction.PNG|thumb|374px|right|केम्पनर फलन का ग्राफ़]][[संख्या सिद्धांत]] में, '''केम्पनर फलन''' <math>S(n)</math> <ref name="oeis">Called the Kempner numbers in the [[Online Encyclopedia of Integer Sequences]]: see {{Cite OEIS|sequencenumber=A002034 |name=Kempner numbers: smallest number ''m'' such that ''n'' divides&nbsp;''m''<nowiki>!</nowiki>}}</ref> को किसी दिए गए सकारात्मक पूर्णांक के लिए परिभाषित किया गया है <math>n</math> [[विभाजित]] को किसी दिए गए सकारात्मक पूर्णांक <math>s</math> के लिए परिभाषित किया गया है जैसे कि <math>n</math> भाज्य {{nowrap|[[फैक्टोरियल]]}} उदाहरण के लिए, संख्या <math>8</math>, <math>1!</math>, <math>2!</math>, को विभाजित नहीं करती है! या 3! लेकिन 4! को विभाजित करता है, इसलिए S(0)=4'.
[[File:SmarandacheFunction.PNG|thumb|374px|right|केम्पनर फलन का ग्राफ़]][[संख्या सिद्धांत]] में, '''केम्पनर फलन''' <math>S(n)</math> <ref name="oeis">Called the Kempner numbers in the [[Online Encyclopedia of Integer Sequences]]: see {{Cite OEIS|sequencenumber=A002034 |name=Kempner numbers: smallest number ''m'' such that ''n'' divides&nbsp;''m''<nowiki>!</nowiki>}}</ref> को किसी दिए गए सकारात्मक पूर्णांक के लिए परिभाषित किया गया है <math>n</math> [[विभाजित]] को किसी दिए गए सकारात्मक पूर्णांक <math>s</math> के लिए परिभाषित किया गया है जैसे कि <math>n</math> भाज्य {{nowrap|[[फैक्टोरियल]]}} उदाहरण के लिए, संख्या <math>8</math>, <math>1!</math>, <math>2!</math>, को विभाजित नहीं करती है! या 3! लेकिन 4! को विभाजित करता है, इसलिए S(0)=4'.


इस प्रकार से इस फलन की विशेषता यह है कि इसमें अत्यधिक असंगत एसिम्प्टोटिक विश्लेषण होता है: यह [[अभाज्य संख्या]]ओं पर रैखिक फलन करता है जिससे केवल फैक्टोरियल संख्याओं पर [[लघुगणकीय वृद्धि]] बढ़ाता है।
इस प्रकार से इस फलन की विशेषता यह है कि इसमें अत्यधिक असंगत एसिम्प्टोटिक विश्लेषण होता है: यह [[अभाज्य संख्या]]ओं पर रैखिक फलन करता है जिससे केवल फैक्टोरियल संख्याओं पर [[लघुगणकीय वृद्धि]] बढ़ाता है।


==इतिहास==
==इतिहास==
इस प्रकार से इस फलन पर सबसे प्रथम 1883 में फ़्राँस्वा एडौर्ड अनातोले लुकास द्वारा विचार किया गया था,<ref name="history1">
इस प्रकार से इस फलन पर सबसे प्रथम 1883 में फ़्राँस्वा एडौर्ड अनातोले लुकास द्वारा विचार किया गया था,<ref name="history1">
{{cite journal
{{cite journal
  | first = E. | last = Lucas | authorlink = François Édouard Anatole Lucas
  | first = E. | last = Lucas | authorlink = François Édouard Anatole Lucas
Line 20: Line 20:
  | pages = 68–69
  | pages = 68–69
  | year = 1887
  | year = 1887
}}</ref> किन्तु 1918 में, ऑब्रे जे. केम्पनर ए. जे. केम्पनर ने {{nowrap|कंप्यूटिंग <math>S(n)</math>.<ref name='history3'>
}}</ref> किन्तु 1918 में, ऑब्रे जे. केम्पनर ए. जे. केम्पनर ने {{nowrap|कंप्यूटिंग <math>S(n)</math>.<ref name='history3'>
{{उद्धरण पत्रिका
{{उद्धरण पत्रिका
   | जेस्टोर = 2972639
   | जेस्टोर = 2972639
Line 31: Line 31:
   | डीओआई = 10.2307/2972639
   | डीओआई = 10.2307/2972639
   | अंक = 5
   | अंक = 5
}}</ref>}} इसके पश्चात सही एल्गोरिथम दिया दिया गया था।
}}</ref>}} इसके पश्चात सही एल्गोरिथम दिया दिया गया था।


अतः {{nowrap|in 1980.<ref>{{cite journal
अतः {{nowrap|in 1980.<ref>{{cite journal
Line 42: Line 42:
  | url = http://www.emis.de/journals/INTEGERS/papers/g23/g23.Abstract.html
  | url = http://www.emis.de/journals/INTEGERS/papers/g23/g23.Abstract.html
  | volume = 6
  | volume = 6
  | year = 2006}}</ref>}} फ्लोरेंटिन स्मारांडचे द्वारा फलन की पुनः खोज के पश्चात केम्पनर फलन को कभी-कभी स्मरैंडचे फलन भी कहा जाता है  
  | year = 2006}}</ref>}} फ्लोरेंटिन स्मारांडचे द्वारा फलन की पुनः खोज के पश्चात केम्पनर फलन को कभी-कभी स्मरैंडचे फलन भी कहा जाता है  


==गुण==
==गुण==
Line 58: Line 58:
}}</ref>}} अर्थात, संख्या <math>n</math> जिसके लिए <math>S(n)</math>, <math>n</math>के सापेक्ष जितना संभव हो उतना बड़ा है, अभाज्य हैं। दूसरी दिशा में, वे संख्याएँ जिनके लिए <math>S(n)</math>यथासंभव छोटी है, सभी {{nowrap| <math>k\ge 1</math>.}} के लिए भाज्य {{nowrap|<math>S(k!)=k</math>,}} हैं
}}</ref>}} अर्थात, संख्या <math>n</math> जिसके लिए <math>S(n)</math>, <math>n</math>के सापेक्ष जितना संभव हो उतना बड़ा है, अभाज्य हैं। दूसरी दिशा में, वे संख्याएँ जिनके लिए <math>S(n)</math>यथासंभव छोटी है, सभी {{nowrap| <math>k\ge 1</math>.}} के लिए भाज्य {{nowrap|<math>S(k!)=k</math>,}} हैं


इस प्रकार से <math>S(n)</math> पूर्णांक गुणांक वाले बहुपद के बहुपद की सबसे छोटी संभव डिग्री है, जिसके पूर्णांकों {{nowrap|by <math>n</math>.<ref name="oeis"/>}} पर सभी मान विभाज्य होते हैं  
इस प्रकार से <math>S(n)</math> पूर्णांक गुणांक वाले बहुपद के बहुपद की सबसे छोटी संभव डिग्री है, जिसके पूर्णांकों {{nowrap|by <math>n</math>.<ref name="oeis"/>}} पर सभी मान विभाज्य होते हैं  






चूंकि उदाहरण के लिए, तथ्य यह है कि <math>S(6)=3</math> इसका मतलब है कि [[घन बहुपद]] है जिसके सभी मान शून्य हैं [[मॉड्यूलर अंकगणित]] 6, उदाहरण के लिए बहुपद :
चूंकि उदाहरण के लिए, तथ्य यह है कि <math>S(6)=3</math> इसका मतलब है कि [[घन बहुपद]] है जिसके सभी मान शून्य हैं [[मॉड्यूलर अंकगणित]] 6, उदाहरण के लिए बहुपद :


<math display="block">x(x-1)(x-2)=x^3-3x^2+2x,</math>
<math display="block">x(x-1)(x-2)=x^3-3x^2+2x,</math>




जिससे  यह कि सभी द्विघात या रैखिक बहुपद (अग्रणी गुणांक  के साथ) कुछ पूर्णांकों पर गैर-शून्य मॉड्यूलो 6 हैं।


इस प्रकार से [[अमेरिकी गणितीय मासिक]] में 1991 में स्थापित और 1994 में वर्तमान समय की गई उन्नत समस्याओं में से में, पॉल एर्डोस ने बताया कि फलन <math>S(n)</math> के सबसे उच्च अभाज्य गुणनखंड से मेल खाता है <math>n</math> लगभग सभी के लिए <math>n</math> (इस अर्थ में कि अपवादों के समुच्चय का [[स्पर्शोन्मुख घनत्व]] शून्य है)।<ref>{{cite journal|title=The smallest factorial that is a multiple of {{mvar|n}} (solution to problem 6674)|journal=[[The American Mathematical Monthly]]|volume=101|year=1994|page=179|url=http://www-fourier.ujf-grenoble.fr/~marin/une_autre_crypto/articles_et_extraits_livres/irationalite/Erdos_P._Kastanas_I.The_smallest_factorial...-.pdf|first1=Paul|last1=Erdős|author1-link=Paul Erdős|first2=Ilias|last2=Kastanas|doi=10.2307/2324376|jstor=2324376 }}.</ref>
जिससे यह कि सभी द्विघात या रैखिक बहुपद (अग्रणी गुणांक के साथ) कुछ पूर्णांकों पर गैर-शून्य मॉड्यूलो 6 हैं।
 
इस प्रकार से [[अमेरिकी गणितीय मासिक]] में 1991 में स्थापित और 1994 में वर्तमान समय की गई उन्नत समस्याओं में से में, पॉल एर्डोस ने बताया कि फलन <math>S(n)</math> के सबसे उच्च अभाज्य गुणनखंड से मेल खाता है <math>n</math> लगभग सभी के लिए <math>n</math> (इस अर्थ में कि अपवादों के समुच्चय का [[स्पर्शोन्मुख घनत्व]] शून्य है)।<ref>{{cite journal|title=The smallest factorial that is a multiple of {{mvar|n}} (solution to problem 6674)|journal=[[The American Mathematical Monthly]]|volume=101|year=1994|page=179|url=http://www-fourier.ujf-grenoble.fr/~marin/une_autre_crypto/articles_et_extraits_livres/irationalite/Erdos_P._Kastanas_I.The_smallest_factorial...-.pdf|first1=Paul|last1=Erdős|author1-link=Paul Erdős|first2=Ilias|last2=Kastanas|doi=10.2307/2324376|jstor=2324376 }}.</ref>
==कम्प्यूटेशनल जटिलता==
==कम्प्यूटेशनल जटिलता==
केम्पनर फलन   मनमानी संख्या <math>S(n)</math>, <math>p</math> के <math>n</math> को विभाजित करने वाली प्रमुख शक्तियों <math>p^e</math> पर अधिकतम है डिवाइडिंग <math>n</math>, का <math>S(p^e)</math>.<ref name="history3"/> जब <math>n</math> स्वयं प्रमुख शक्ति <math>p^e</math> है , इसके केम्पनर फलन को बहुपद समय में गुणकों को क्रमिक रूप से स्कैन करके पाया जा सकता है जब तक पहला व्यक्ति न मिल जाए जिसके भाज्य {{nowrap|<math>p</math>.}} में पर्याप्त गुणज हों समान [[कलन विधि]] को किसी के लिए भी बढ़ाया जा सकता है जिसका अभाज्य गुणनखंडन प्रथम से ही ज्ञात है, इसे गुणनखंडन <math>n</math> में प्रत्येक अभाज्य शक्ति पर अलग से प्रस्तुत करके और उस को चुनना जो अधिक उच्च मूल्य की ओर ले जाते है।
केम्पनर फलन मनमानी संख्या <math>S(n)</math>, <math>p</math> के <math>n</math> को विभाजित करने वाली प्रमुख शक्तियों <math>p^e</math> पर अधिकतम है डिवाइडिंग <math>n</math>, का <math>S(p^e)</math>.<ref name="history3"/> जब <math>n</math> स्वयं प्रमुख शक्ति <math>p^e</math> है , इसके केम्पनर फलन को बहुपद समय में गुणकों को क्रमिक रूप से स्कैन करके पाया जा सकता है जब तक पहला व्यक्ति न मिल जाए जिसके भाज्य {{nowrap|<math>p</math>.}} में पर्याप्त गुणज हों समान [[कलन विधि]] को किसी के लिए भी बढ़ाया जा सकता है जिसका अभाज्य गुणनखंडन प्रथम से ही ज्ञात है, इसे गुणनखंडन <math>n</math> में प्रत्येक अभाज्य शक्ति पर अलग से प्रस्तुत करके और उस को चुनना जो अधिक उच्च मूल्य की ओर ले जाते है।


इस प्रकार से फॉर्म के नंबर के लिए <math>n=px</math>, जहाँ <math>p</math> प्रधान है और <math>x</math> मै रुक जाना <math>p</math>, केम्पनर फलन <math>n</math>, <math>p</math> है.<ref name="history3"/>इससे यह पता चलता है कि [[सेमीप्राइम]] (दो प्राइम का उत्पाद) के केम्पनर फलन की गणना करना कम्प्यूटेशनल रूप से इसके [[मुख्य गुणनखंड प्रक्रिया]] को खोजने के बराबर है, जिसे कठिन समस्या माना जाता है। अधिक सामान्यतः, जब भी <math>n</math> भाज्य संख्या है, जिसका सबसे बड़ा सामान्य भाजक है <math>S(n)</math> {{nowrap| <math>n</math>}} आवश्यक रूप से गैरतुच्छ [[भाजक]] {{nowrap|<math>n</math>,}} होगा अनुमति देना <math>n</math> केम्पनर फलन के बार-बार मूल्यांकन द्वारा कारक बनाया जाता है । इसलिए, केम्पनर फलन की गणना करना सामान्यतः मिश्रित संख्याओं का गुणनखंड करना समान नहीं हो सकता है।
इस प्रकार से फॉर्म के नंबर के लिए <math>n=px</math>, जहाँ <math>p</math> प्रधान है और <math>x</math> मै रुक जाना <math>p</math>, केम्पनर फलन <math>n</math>, <math>p</math> है.<ref name="history3"/>इससे यह पता चलता है कि [[सेमीप्राइम]] (दो प्राइम का उत्पाद) के केम्पनर फलन की गणना करना कम्प्यूटेशनल रूप से इसके [[मुख्य गुणनखंड प्रक्रिया]] को खोजने के बराबर है, जिसे कठिन समस्या माना जाता है। अधिक सामान्यतः, जब भी <math>n</math> भाज्य संख्या है, जिसका सबसे बड़ा सामान्य भाजक है <math>S(n)</math> {{nowrap| <math>n</math>}} आवश्यक रूप से गैरतुच्छ [[भाजक]] {{nowrap|<math>n</math>,}} होगा अनुमति देना <math>n</math> केम्पनर फलन के बार-बार मूल्यांकन द्वारा कारक बनाया जाता है । इसलिए, केम्पनर फलन की गणना करना सामान्यतः मिश्रित संख्याओं का गुणनखंड करना समान नहीं हो सकता है।


==सन्दर्भ और नोट्स==
==सन्दर्भ और नोट्स==

Revision as of 10:45, 8 July 2023

केम्पनर फलन का ग्राफ़

संख्या सिद्धांत में, केम्पनर फलन [1] को किसी दिए गए सकारात्मक पूर्णांक के लिए परिभाषित किया गया है विभाजित को किसी दिए गए सकारात्मक पूर्णांक के लिए परिभाषित किया गया है जैसे कि भाज्य फैक्टोरियल उदाहरण के लिए, संख्या , , , को विभाजित नहीं करती है! या 3! लेकिन 4! को विभाजित करता है, इसलिए S(0)=4'.

इस प्रकार से इस फलन की विशेषता यह है कि इसमें अत्यधिक असंगत एसिम्प्टोटिक विश्लेषण होता है: यह अभाज्य संख्याओं पर रैखिक फलन करता है जिससे केवल फैक्टोरियल संख्याओं पर लघुगणकीय वृद्धि बढ़ाता है।

इतिहास

इस प्रकार से इस फलन पर सबसे प्रथम 1883 में फ़्राँस्वा एडौर्ड अनातोले लुकास द्वारा विचार किया गया था,[2] इसके पश्चात 1887 में जोसेफ जीन-बैप्टिस्ट न्यूबर्ग द्वारा विचार दिया गया था।[3] किन्तु 1918 में, ऑब्रे जे. केम्पनर ए. जे. केम्पनर ने कंप्यूटिंग .[4] इसके पश्चात सही एल्गोरिथम दिया दिया गया था।

अतः in 1980.[5] फ्लोरेंटिन स्मारांडचे द्वारा फलन की पुनः खोज के पश्चात केम्पनर फलन को कभी-कभी स्मरैंडचे फलन भी कहा जाता है

गुण

चूंकि , को विभाजित करता है, इसलिए हमेशा अधिकतम होता है। 4 से बड़ी संख्या एक अभाज्य संख्या होती है, यदि और केवल यदि if .[6] अर्थात, संख्या जिसके लिए , के सापेक्ष जितना संभव हो उतना बड़ा है, अभाज्य हैं। दूसरी दिशा में, वे संख्याएँ जिनके लिए यथासंभव छोटी है, सभी . के लिए भाज्य , हैं

इस प्रकार से पूर्णांक गुणांक वाले बहुपद के बहुपद की सबसे छोटी संभव डिग्री है, जिसके पूर्णांकों by .[1] पर सभी मान विभाज्य होते हैं


चूंकि उदाहरण के लिए, तथ्य यह है कि इसका मतलब है कि घन बहुपद है जिसके सभी मान शून्य हैं मॉड्यूलर अंकगणित 6, उदाहरण के लिए बहुपद :


जिससे यह कि सभी द्विघात या रैखिक बहुपद (अग्रणी गुणांक के साथ) कुछ पूर्णांकों पर गैर-शून्य मॉड्यूलो 6 हैं।

इस प्रकार से अमेरिकी गणितीय मासिक में 1991 में स्थापित और 1994 में वर्तमान समय की गई उन्नत समस्याओं में से में, पॉल एर्डोस ने बताया कि फलन के सबसे उच्च अभाज्य गुणनखंड से मेल खाता है लगभग सभी के लिए (इस अर्थ में कि अपवादों के समुच्चय का स्पर्शोन्मुख घनत्व शून्य है)।[7]

कम्प्यूटेशनल जटिलता

केम्पनर फलन मनमानी संख्या , के को विभाजित करने वाली प्रमुख शक्तियों पर अधिकतम है डिवाइडिंग , का .[4] जब स्वयं प्रमुख शक्ति है , इसके केम्पनर फलन को बहुपद समय में गुणकों को क्रमिक रूप से स्कैन करके पाया जा सकता है जब तक पहला व्यक्ति न मिल जाए जिसके भाज्य . में पर्याप्त गुणज हों समान कलन विधि को किसी के लिए भी बढ़ाया जा सकता है जिसका अभाज्य गुणनखंडन प्रथम से ही ज्ञात है, इसे गुणनखंडन में प्रत्येक अभाज्य शक्ति पर अलग से प्रस्तुत करके और उस को चुनना जो अधिक उच्च मूल्य की ओर ले जाते है।

इस प्रकार से फॉर्म के नंबर के लिए , जहाँ प्रधान है और मै रुक जाना , केम्पनर फलन , है.[4]इससे यह पता चलता है कि सेमीप्राइम (दो प्राइम का उत्पाद) के केम्पनर फलन की गणना करना कम्प्यूटेशनल रूप से इसके मुख्य गुणनखंड प्रक्रिया को खोजने के बराबर है, जिसे कठिन समस्या माना जाता है। अधिक सामान्यतः, जब भी भाज्य संख्या है, जिसका सबसे बड़ा सामान्य भाजक है आवश्यक रूप से गैरतुच्छ भाजक , होगा अनुमति देना केम्पनर फलन के बार-बार मूल्यांकन द्वारा कारक बनाया जाता है । इसलिए, केम्पनर फलन की गणना करना सामान्यतः मिश्रित संख्याओं का गुणनखंड करना समान नहीं हो सकता है।

सन्दर्भ और नोट्स

  1. 1.0 1.1 Called the Kempner numbers in the Online Encyclopedia of Integer Sequences: see Sloane, N. J. A. (ed.). "Sequence A002034 (Kempner numbers: smallest number m such that n divides m!)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. Lucas, E. (1883). "Question Nr. 288". Mathesis. 3: 232.
  3. Neuberg, J. (1887). "Solutions de questions proposées, Question Nr. 288". Mathesis. 7: 68–69.
  4. 4.0 4.1 4.2 Template:उद्धरण पत्रिका
  5. Hungerbühler, Norbert; Specker, Ernst (2006). "A generalization of the Smarandache function to several variables". Integers. 6: A23, 11. MR 2264838.
  6. R. Muller (1990). "Editorial" (PDF). Smarandache Function Journal. 1: 1. ISBN 84-252-1918-3.
  7. Erdős, Paul; Kastanas, Ilias (1994). "The smallest factorial that is a multiple of n[[Category: Templates Vigyan Ready]] (solution to problem 6674)" (PDF). The American Mathematical Monthly. 101: 179. doi:10.2307/2324376. JSTOR 2324376. {{cite journal}}: URL–wikilink conflict (help).

This article incorporates material from Smarandache function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.