संशोधनीय समुच्चय (रेक्टिफिएबल सेट): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:




गणित में, एक सुधार योग्य सेट एक ऐसा सेट होता है जो एक निश्चित माप-सैद्धांतिक अर्थ में सुचारू होता है। यह सुधार योग्य वक्र के विचार का उच्च आयामों तक विस्तार है; समान्य रूप से कहें तो, एक सुधार योग्य सेट एक टुकड़ा-वार चिकनी सेट का एक कठोर सूत्रीकरण है। इस प्रकार, इसमें स्मूथ मैनिफ़ोल्ड के कई वांछनीय गुण हैं, जिनमें स्पर्शरेखा स्थान भी सम्मिलित हैं जो लगभग हर जगह परिभाषित हैं। ज्यामितीय माप सिद्धांत में सुधार योग्य सेट अध्ययन का अंतर्निहित उद्देश्य हैं।
गणित में, एक सुधार योग्य सेट एक ऐसा सेट होता है जो एक निश्चित माप-सैद्धांतिक अर्थ में सुचारू होता है। यह सुधार योग्य वक्र के विचार का उच्च आयामों तक विस्तार है; समान्य रूप से कहें तो, एक सुधार योग्य सेट एक टुकड़ा-वार चिकनी सेट का एक कठोर सूत्रीकरण है। इस प्रकार, इसमें स्मूथ मैनिफ़ोल्ड के कई वांछनीय गुण हैं, जिनमें स्पर्शरेखा स्थान भी सम्मिलित हैं जो लगभग हर जगह परिभाषित हैं। ज्यामितीय माप सिद्धांत में सुधार योग्य सेट अध्ययन का अंतर्निहित उद्देश्य हैं।


==परिभाषा==
==परिभाषा==
Line 26: Line 26:
#E तब <math>(\phi,m)</math> सुधार योग्य है जब E गणनीय रूप से <math>(\phi,m)</math> सुधार योग्य है और <math>\phi(E)<\infty</math> है।
#E तब <math>(\phi,m)</math> सुधार योग्य है जब E गणनीय रूप से <math>(\phi,m)</math> सुधार योग्य है और <math>\phi(E)<\infty</math> है।
#E पूरी तरह से <math>(\phi,m)</math> अप्राप्य है जब <math>\phi</math> X पर एक माप है और E में <math>\phi(F)>0</math> के साथ कोई <math>m</math> सुधार योग्य सेट F सम्मिलित नहीं है।
#E पूरी तरह से <math>(\phi,m)</math> अप्राप्य है जब <math>\phi</math> X पर एक माप है और E में <math>\phi(F)>0</math> के साथ कोई <math>m</math> सुधार योग्य सेट F सम्मिलित नहीं है।
'''परिभाषा 3 के साथ <math>\phi=\mathcal{H}^m</math> और'''
<math>\phi=\mathcal{H}^m</math> और <math>X=\mathbb{R}^n</math> के साथ परिभाषा 3 यूक्लिडियन रिक्त स्थान के उपसमुच्चय के लिए उपरोक्त परिभाषा के सबसे समीप आती है।
<math>\phi=\mathcal{H}^m</math> और <math>X=\mathbb{R}^n</math> के साथ परिभाषा 3 यूक्लिडियन रिक्त स्थान के उपसमुच्चय के लिए उपरोक्त परिभाषा के सबसे समीप आती है।
#'''जूद होने पर इसे सुधारा जा सकता है <math>f:K \to E</math> कुछ परिबद्ध उपसमुच्चय के लिए <math>K</math> का <math>\mathbb{R}^m</math> पर <math>E</math>.'''
# '''E 'गिनती योग्य' है <math>m</math> सुधार योग्य जब ''ई'' एक गणनीय परिवार'''
'''<math>X=\mathbb{R}^n</math> यूक्लिडियन रिक्त स्थान के उपसमुच्चय के लिए उपरोक्त परिभाषा के सबसे करीब आता है।'''
==टिप्पणियाँ==
==टिप्पणियाँ==
{{reflist}}
{{reflist}}

Revision as of 17:18, 9 July 2023


गणित में, एक सुधार योग्य सेट एक ऐसा सेट होता है जो एक निश्चित माप-सैद्धांतिक अर्थ में सुचारू होता है। यह सुधार योग्य वक्र के विचार का उच्च आयामों तक विस्तार है; समान्य रूप से कहें तो, एक सुधार योग्य सेट एक टुकड़ा-वार चिकनी सेट का एक कठोर सूत्रीकरण है। इस प्रकार, इसमें स्मूथ मैनिफ़ोल्ड के कई वांछनीय गुण हैं, जिनमें स्पर्शरेखा स्थान भी सम्मिलित हैं जो लगभग हर जगह परिभाषित हैं। ज्यामितीय माप सिद्धांत में सुधार योग्य सेट अध्ययन का अंतर्निहित उद्देश्य हैं।

परिभाषा

यूक्लिडियन स्पेस के एक बोरेल उपसमुच्चय को -सुधार योग्य सेट कहा जाता है यदि हॉसडॉर्फ आयाम का है, और लगातार अलग-अलग मानचित्रों का एक गणनीय संग्रह उपस्थित है।

ऐसा कि m-हॉसडॉर्फ़ का माप है


जैसे कि के m-हॉसडॉर्फ़ माप को बिना परिभाषा में बदलाव किए लिप्सचिट्ज़ निरंतर माना जा सकता है।।[1][2][3] अन्य लेखकों की अलग-अलग परिभाषाएँ हैं, उदाहरण के लिए, को एम-आयामी होने की आवश्यकता नहीं है, किंतु इसकी आवश्यकता है कि सेटों का एक गणनीय संघ है जो के कुछ बंधे उपसमुच्चय से लिप्सचिट्ज़ मानचित्र की छवि है

एक समुच्चय को पूर्णतः -असुधार्य कहा जाता है यदि प्रत्येक (निरंतर अवकलनीय) के लिए, एक के पास है

दो आयामों में विशुद्ध रूप से 1-असुधार्य सेट का एक मानक उदाहरण स्मिथ-वोल्टेरा-कैंटर सेट समय का क्रॉस-उत्पाद है।

मीट्रिक स्थानों में सुधार योग्य सेट

Federer (1969, pp. 251–252) सामान्य मीट्रिक स्थान X में m-सुधार योग्य सेट E के लिए निम्नलिखित शब्दावली देता है।

  1. E तब सुधार योग्य होता है जब के कुछ परिबद्ध उपसमुच्चय के लिए पर लिप्सचिट्ज़ मानचित्र उपस्थित होता है।
  2. E गणनीय रूप से सुधार योग्य है जब E, m सुधार योग्य सेटों के गणनीय परिवार के मिलन के बराबर होता है।
  3. E गणनीय रूप से सुधार योग्य है जब X पर एक माप है और एक गणनीय सुधार योग्य सेट F है जैसे कि
  4. E तब सुधार योग्य है जब E गणनीय रूप से सुधार योग्य है और है।
  5. E पूरी तरह से अप्राप्य है जब X पर एक माप है और E में के साथ कोई सुधार योग्य सेट F सम्मिलित नहीं है।

और के साथ परिभाषा 3 यूक्लिडियन रिक्त स्थान के उपसमुच्चय के लिए उपरोक्त परिभाषा के सबसे समीप आती है।

टिप्पणियाँ

  1. Simon 1984, p. 58, calls this definition "countably m-rectifiable".
  2. "Rectifiable set", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  3. Weisstein, Eric W. "Rectifiable Set". MathWorld. Retrieved 2020-04-17.


संदर्भ


बाहरी संबंध