संघनन (गणित): Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Embedding a topological space into a compact space as a dense subset}} गणित में, सामान्य टोपोलॉजी में...")
 
No edit summary
Line 1: Line 1:
{{short description|Embedding a topological space into a compact space as a dense subset}}
{{short description|Embedding a topological space into a compact space as a dense subset}}
गणित में, [[सामान्य टोपोलॉजी]] में, कॉम्पेक्टिफिकेशन एक [[टोपोलॉजिकल स्पेस]] को [[ सघन स्थान ]] में बनाने की प्रक्रिया या परिणाम है।<ref>{{cite book | last=Munkres | first=James R. | author-link=James Munkres | title=टोपोलॉजी| edition=2nd | publisher=[[Prentice Hall]] | year=2000 | isbn=0-13-181629-2}}</ref> एक सघन स्थान वह स्थान है जिसमें अंतरिक्ष के प्रत्येक खुले आवरण में एक परिमित उपआवरण होता है। संघनन की विधियाँ विभिन्न हैं, लेकिन प्रत्येक अनंत पर बिंदुओं को जोड़कर या ऐसे पलायन को रोककर बिंदुओं को अनंत तक जाने से नियंत्रित करने का एक तरीका है।
गणित की [[सामान्य टोपोलॉजी]] में, '''संकलन''' [[टोपोलॉजिकल स्पेस]] को [[ सघन स्थान |सघन स्थान]] में बनाने की प्रक्रिया या परिणाम है।<ref>{{cite book | last=Munkres | first=James R. | author-link=James Munkres | title=टोपोलॉजी| edition=2nd | publisher=[[Prentice Hall]] | year=2000 | isbn=0-13-181629-2}}</ref> सघन स्थान वह स्थान है जिसमें समष्‍टि के प्रत्येक विवृत आवरण में परिमित उपआवरण होता है। संकलन की विभिन्न विधियाँ होती हैं, किन्तु प्रत्येक विधि अनंत पर बिंदुओं को जोड़कर या ऐसे पलायन को अवरोधित कर बिंदुओं को अनंत तक जाने से नियंत्रित करती है।


== एक उदाहरण ==
== उदाहरण ==


इसकी सामान्य टोपोलॉजी के साथ वास्तविक रेखा पर विचार करें। यह स्थान सघन नहीं है; एक अर्थ में, बिंदु बायीं या दायीं ओर अनंत तक जा सकते हैं। अनंत पर एक बिंदु जोड़कर वास्तविक रेखा को एक सघन स्थान में बदलना संभव है जिसे हम ∞ द्वारा निरूपित करेंगे। परिणामी संघनन को एक वृत्त के रूप में सोचा जा सकता है (जो यूक्लिडियन तल के एक बंद और बंधे उपसमुच्चय के रूप में सघन है)। प्रत्येक क्रम जो वास्तविक रेखा में अनंत तक चला गया, वह इस संघनन में ∞ में परिवर्तित हो जाएगा।
इसकी सामान्य टोपोलॉजी के साथ वास्तविक रेखा पर विचार करें। यह स्थान सघन नहीं है; अर्थात बिंदु बायीं या दायीं ओर अनंत तक जा सकते हैं। अनंत पर बिंदु जोड़कर वास्तविक रेखा को सघन स्थान में परिवर्तित करना संभव है जिसे हम ∞ द्वारा निरूपित करेंगे। परिणामी संकलन का वृत्त के रूप में विचार किया जा सकता है (जो यूक्लिडियन तल के संवृत और परिबद्ध उपसमुच्चय के रूप में सघन है)। प्रत्येक क्रम जो वास्तविक रेखा में अनंत तक चला गया, वह इस संकलन में ∞ में परिवर्तित हो जाएगा।


सहज रूप से, प्रक्रिया को इस प्रकार चित्रित किया जा सकता है: पहले वास्तविक रेखा को खुले अंतराल में सिकोड़ें {{nowrap|(−[[pi|{{pi}}]], {{pi}})}} एक्स-अक्ष पर; फिर इस अंतराल के सिरों को ऊपर की ओर मोड़ें (सकारात्मक y-दिशा में) और उन्हें एक-दूसरे की ओर ले जाएं, जब तक कि आपको एक ऐसा वृत्त न मिल जाए जिसमें एक बिंदु (सबसे ऊपर वाला) गायब हो। यह बिंदु अनंत पर हमारा नया बिंदु ∞ है; इसे जोड़ने से कॉम्पैक्ट सर्कल पूरा हो जाता है।
सहज रूप से, प्रक्रिया को इस प्रकार चित्रित किया जा सकता है: पहले वास्तविक रेखा को खुले अंतराल में सिकोड़ें {{nowrap|(−[[pi|{{pi}}]], {{pi}})}} एक्स-अक्ष पर; फिर इस अंतराल के सिरों को ऊपर की ओर मोड़ें (सकारात्मक y-दिशा में) और उन्हें एक-दूसरे की ओर ले जाएं, जब तक कि आपको एक ऐसा वृत्त न मिल जाए जिसमें एक बिंदु (सबसे ऊपर वाला) गायब हो। यह बिंदु अनंत पर हमारा नया बिंदु ∞ है; इसे जोड़ने से कॉम्पैक्ट सर्कल पूरा हो जाता है।
Line 41: Line 41:


== प्रक्षेप्य स्थान ==
== प्रक्षेप्य स्थान ==
[[वास्तविक प्रक्षेप्य स्थान]] आरपी<sup>n</sup>यूक्लिडियन स्पेस 'आर' का एक संघनन है<sup>n</sup>. प्रत्येक संभावित दिशा के लिए जिसमें 'आर' में बिंदु हैं<sup>n</sup> बच सकता है, अनंत पर एक नया बिंदु जोड़ा जाता है (लेकिन प्रत्येक दिशा को उसके विपरीत से पहचाना जाता है)। ऊपर दिए गए उदाहरण में हमने 'आर' का जो अलेक्जेंड्रॉफ़ एक-बिंदु संघनन बनाया है, वह वास्तव में 'आरपी' का होमियोमोर्फिक है।<sup>1</sup>. हालाँकि ध्यान दें कि [[प्रक्षेप्य तल]] RP<sup>2</sup>तल 'R' का एक-बिंदु संघनन नहीं है<sup>2</sup>चूंकि एक से अधिक अंक जोड़े गए हैं।
[[वास्तविक प्रक्षेप्य स्थान]] आरपी<sup>n</sup>यूक्लिडियन स्पेस 'आर' का एक संघनन है<sup>n</sup>. प्रत्येक संभावित दिशा के लिए जिसमें 'आर' में बिंदु हैं<sup>n</sup> बच सकता है, अनंत पर एक नया बिंदु जोड़ा जाता है (किन्तु प्रत्येक दिशा को उसके विपरीत से पहचाना जाता है)। ऊपर दिए गए उदाहरण में हमने 'आर' का जो अलेक्जेंड्रॉफ़ एक-बिंदु संघनन बनाया है, वह वास्तव में 'आरपी' का होमियोमोर्फिक है।<sup>1</sup>. हालाँकि ध्यान दें कि [[प्रक्षेप्य तल]] RP<sup>2</sup>तल 'R' का एक-बिंदु संघनन नहीं है<sup>2</sup>चूंकि एक से अधिक अंक जोड़े गए हैं।


[[जटिल प्रक्षेप्य स्थान]] सी.पी<sup>n</sup> भी 'सी' का एक संक्षिप्तीकरण है<sup>n</sup>; विमान 'सी' का अलेक्जेंड्रॉफ़ एक-बिंदु संघनन जटिल प्रक्षेप्य रेखा 'सीपी' (होमियोमोर्फिक) है<sup>1</sup>, जिसे बदले में एक गोले, रीमैन गोले से पहचाना जा सकता है।
[[जटिल प्रक्षेप्य स्थान]] सी.पी<sup>n</sup> भी 'सी' का एक संक्षिप्तीकरण है<sup>n</sup>; विमान 'सी' का अलेक्जेंड्रॉफ़ एक-बिंदु संघनन जटिल प्रक्षेप्य रेखा 'सीपी' (होमियोमोर्फिक) है<sup>1</sup>, जिसे बदले में एक गोले, रीमैन गोले से पहचाना जा सकता है।


प्रक्षेप्य स्थान पर जाना [[बीजगणितीय ज्यामिति]] में एक सामान्य उपकरण है क्योंकि अनंत पर जोड़े गए बिंदु कई प्रमेयों के सरल सूत्रीकरण की ओर ले जाते हैं। उदाहरण के लिए, आरपी में कोई दो अलग-अलग लाइनें<sup>2</sup> बिल्कुल एक बिंदु पर प्रतिच्छेद करता है, एक कथन जो R में सत्य नहीं है<sup>2</sup>. अधिक आम तौर पर, बेज़ाउट का प्रमेय, जो [[प्रतिच्छेदन सिद्धांत]] में मौलिक है, प्रक्षेप्य स्थान में है, लेकिन एफ़िन स्पेस में नहीं। एफ़िन स्पेस और प्रोजेक्टिव स्पेस में इंटरसेक्शन का यह विशिष्ट व्यवहार [[ कोहोमोलोजी रिंग ]]्स में [[बीजगणितीय टोपोलॉजी]] में परिलक्षित होता है - एफ़िन स्पेस का कोहोलॉजी तुच्छ है, जबकि प्रोजेक्टिव स्पेस का कोहोलॉजी गैर-तुच्छ है और इंटरसेक्शन सिद्धांत (आयाम और) की प्रमुख विशेषताओं को दर्शाता है। एक उपविविधता की डिग्री, प्रतिच्छेदन [[कप उत्पाद]] के लिए पोंकारे दोहरी है)।
प्रक्षेप्य स्थान पर जाना [[बीजगणितीय ज्यामिति]] में एक सामान्य उपकरण है क्योंकि अनंत पर जोड़े गए बिंदु कई प्रमेयों के सरल सूत्रीकरण की ओर ले जाते हैं। उदाहरण के लिए, आरपी में कोई दो अलग-अलग लाइनें<sup>2</sup> बिल्कुल एक बिंदु पर प्रतिच्छेद करता है, एक कथन जो R में सत्य नहीं है<sup>2</sup>. अधिक आम तौर पर, बेज़ाउट का प्रमेय, जो [[प्रतिच्छेदन सिद्धांत]] में मौलिक है, प्रक्षेप्य स्थान में है, किन्तु एफ़िन स्पेस में नहीं। एफ़िन स्पेस और प्रोजेक्टिव स्पेस में इंटरसेक्शन का यह विशिष्ट व्यवहार [[ कोहोमोलोजी रिंग ]]्स में [[बीजगणितीय टोपोलॉजी]] में परिलक्षित होता है - एफ़िन स्पेस का कोहोलॉजी तुच्छ है, जबकि प्रोजेक्टिव स्पेस का कोहोलॉजी गैर-तुच्छ है और इंटरसेक्शन सिद्धांत (आयाम और) की प्रमुख विशेषताओं को दर्शाता है। एक उपविविधता की डिग्री, प्रतिच्छेदन [[कप उत्पाद]] के लिए पोंकारे दोहरी है)।


मॉड्यूलि रिक्त स्थान के संघनन के लिए आम तौर पर कुछ अध:पतन की अनुमति की आवश्यकता होती है - उदाहरण के लिए, कुछ विलक्षणताओं या कम करने योग्य किस्मों की अनुमति देना। इसका उपयोग विशेष रूप से बीजगणितीय वक्रों के मॉड्यूली के डेलिग्ने-ममफोर्ड कॉम्पेक्टिफिकेशन में किया जाता है।
मॉड्यूलि रिक्त स्थान के संघनन के लिए आम तौर पर कुछ अध:पतन की अनुमति की आवश्यकता होती है - उदाहरण के लिए, कुछ विलक्षणताओं या कम करने योग्य किस्मों की अनुमति देना। इसका उपयोग विशेष रूप से बीजगणितीय वक्रों के मॉड्यूली के डेलिग्ने-ममफोर्ड कॉम्पेक्टिफिकेशन में किया जाता है।

Revision as of 21:32, 11 July 2023

गणित की सामान्य टोपोलॉजी में, संकलन टोपोलॉजिकल स्पेस को सघन स्थान में बनाने की प्रक्रिया या परिणाम है।[1] सघन स्थान वह स्थान है जिसमें समष्‍टि के प्रत्येक विवृत आवरण में परिमित उपआवरण होता है। संकलन की विभिन्न विधियाँ होती हैं, किन्तु प्रत्येक विधि अनंत पर बिंदुओं को जोड़कर या ऐसे पलायन को अवरोधित कर बिंदुओं को अनंत तक जाने से नियंत्रित करती है।

उदाहरण

इसकी सामान्य टोपोलॉजी के साथ वास्तविक रेखा पर विचार करें। यह स्थान सघन नहीं है; अर्थात बिंदु बायीं या दायीं ओर अनंत तक जा सकते हैं। अनंत पर बिंदु जोड़कर वास्तविक रेखा को सघन स्थान में परिवर्तित करना संभव है जिसे हम ∞ द्वारा निरूपित करेंगे। परिणामी संकलन का वृत्त के रूप में विचार किया जा सकता है (जो यूक्लिडियन तल के संवृत और परिबद्ध उपसमुच्चय के रूप में सघन है)। प्रत्येक क्रम जो वास्तविक रेखा में अनंत तक चला गया, वह इस संकलन में ∞ में परिवर्तित हो जाएगा।

सहज रूप से, प्रक्रिया को इस प्रकार चित्रित किया जा सकता है: पहले वास्तविक रेखा को खुले अंतराल में सिकोड़ें (−[[pi|π]], π) एक्स-अक्ष पर; फिर इस अंतराल के सिरों को ऊपर की ओर मोड़ें (सकारात्मक y-दिशा में) और उन्हें एक-दूसरे की ओर ले जाएं, जब तक कि आपको एक ऐसा वृत्त न मिल जाए जिसमें एक बिंदु (सबसे ऊपर वाला) गायब हो। यह बिंदु अनंत पर हमारा नया बिंदु ∞ है; इसे जोड़ने से कॉम्पैक्ट सर्कल पूरा हो जाता है।

थोड़ा और औपचारिक रूप से: हम इकाई चक्र पर एक बिंदु को उसके कोण से, कांति में, दर्शाते हैं -π को π सरलता के लिए। वृत्त पर ऐसे प्रत्येक बिंदु θ को वास्तविक रेखा स्पर्शरेखा (θ/2) पर संगत बिंदु से पहचानें। यह फ़ंक्शन बिंदु पर अपरिभाषित है π, तब से(π/2) अपरिभाषित है; हम इस बिंदु को अपने बिंदु ∞ से पहचानेंगे।

चूंकि स्पर्शरेखा और व्युत्क्रम स्पर्शरेखा दोनों निरंतर हैं, हमारा पहचान कार्य वास्तविक रेखा और ∞ के बिना इकाई वृत्त के बीच एक समरूपता है। हमने जो निर्माण किया है उसे वास्तविक रेखा का अलेक्जेंड्रॉफ़ एक-बिंदु संघनन कहा जाता है, जिसकी नीचे अधिक व्यापकता में चर्चा की गई है। दो बिंदुओं, +∞ और −∞ को जोड़कर वास्तविक रेखा को संकुचित करना भी संभव है; इसके परिणामस्वरूप विस्तारित वास्तविक रेखा प्राप्त होती है।

परिभाषा

एक कॉम्पैक्ट स्पेस के घने सेट उपसमुच्चय के रूप में टोपोलॉजिकल स्पेस

कॉम्पैक्ट हॉसडॉर्फ़ स्थानों में एम्बेडिंग विशेष रुचि की हो सकती है। चूँकि प्रत्येक कॉम्पैक्ट हॉसडॉर्फ़ स्पेस एक टाइकोनोफ़ स्थान है, और टाइकोनॉफ़ स्पेस का प्रत्येक उप-स्थान टाइकोनॉफ़ है, हम यह निष्कर्ष निकालते हैं कि हॉसडॉर्फ़ कॉम्पेक्टिफ़िकेशन वाला कोई भी स्थान टाइकोनॉफ़ स्पेस होना चाहिए। वास्तव में, इसका विपरीत भी सत्य है; हॉसडॉर्फ कॉम्पेक्टिफिकेशन के लिए टाइकोनॉफ़ स्पेस होना आवश्यक और पर्याप्त दोनों है।

तथ्य यह है कि गैर-कॉम्पैक्ट रिक्त स्थान के बड़े और दिलचस्प वर्गों में वास्तव में विशेष प्रकार के कॉम्पैक्टिफिकेशन होते हैं, जो टोपोलॉजी में कॉम्पैक्टिफिकेशन को एक सामान्य तकनीक बनाता है।

अलेक्जेंड्रोफ़ एक-बिंदु संघनन

किसी भी नॉनकॉम्पैक्ट टोपोलॉजिकल स्पेस एक्स के सेट को फॉर्म जी ∪ के सेट के साथ{∞}, जहां G, X का एक खुला उपसमुच्चय है जैसे कि XG बंद और सघन है. एक्स का एक-बिंदु संघनन हॉसडॉर्फ़ है यदि और केवल यदि एक्स हॉसडॉर्फ़ है और स्थानीय रूप से कॉम्पैक्ट है।[2]


स्टोन-बोहेमिया संघनन

विशेष रुचि हॉसडॉर्फ़ कॉम्पेक्टिफिकेशन्स की है, यानी, कॉम्पैक्टिफिकेशन जिसमें कॉम्पैक्ट स्पेस हॉसडॉर्फ स्पेस है। एक टोपोलॉजिकल स्पेस में हॉसडॉर्फ़ कॉम्पेक्टिफिकेशन होता है यदि और केवल तभी जब यह टाइकोनोफ़ स्पेस हो। इस मामले में, एक अद्वितीय (होमियोमोर्फिज्म तक) सबसे सामान्य हॉसडॉर्फ कॉम्पेक्टिफिकेशन है, एक्स का स्टोन-सेच कॉम्पेक्टिफिकेशन, जिसे βX द्वारा दर्शाया गया है; औपचारिक रूप से, यह कॉम्पैक्ट हॉसडॉर्फ़ रिक्त स्थान और निरंतर मानचित्रों की श्रेणी (गणित) को टाइकोनॉफ़ रिक्त स्थान और निरंतर मानचित्रों की श्रेणी के प्रतिबिंबित उपश्रेणी के रूप में प्रदर्शित करता है।

सबसे सामान्य या औपचारिक रूप से प्रतिबिंबित करने का मतलब है कि अंतरिक्ष βX को सार्वभौमिक संपत्ति की विशेषता है कि एक्स से कॉम्पैक्ट हॉसडॉर्फ स्पेस K तक किसी भी निरंतर फ़ंक्शन (टोपोलॉजी) को βX से K तक एक अद्वितीय तरीके से निरंतर फ़ंक्शन तक बढ़ाया जा सकता है। अधिक स्पष्ट रूप से, βX एक कॉम्पैक्ट हॉसडॉर्फ स्पेस है जिसमें X शामिल है जैसे कि βX द्वारा X पर सबस्पेस टोपोलॉजी f : XK, जहां K एक कॉम्पैक्ट हॉसडॉर्फ स्थान है, वहां एक अद्वितीय निरंतर मानचित्र है g : βXK जिसके लिए g, X तक सीमित है, समान रूप से f है।

स्टोन-सेच कॉम्पेक्टिफिकेशन का निर्माण स्पष्ट रूप से निम्नानुसार किया जा सकता है: C को X से बंद अंतराल तक निरंतर कार्यों का सेट होने दें [0, 1]. फिर X में प्रत्येक बिंदु को C पर एक मूल्यांकन फ़ंक्शन के साथ पहचाना जा सकता है। इस प्रकार X को एक सबसेट के साथ पहचाना जा सकता है [0, 1]C, C से सभी फ़ंक्शंस का स्थान [0, 1]. चूंकि उत्तरार्द्ध टाइकोनोफ़ के प्रमेय द्वारा कॉम्पैक्ट है, उस स्थान के सबसेट के रूप में एक्स का बंद होना भी कॉम्पैक्ट होगा। यह स्टोन-सेच कॉम्पेक्टिफिकेशन है।[3] [4]


स्पेसटाइम कॉम्पेक्टिफिकेशन

वाल्टर बेंज और इसहाक याग्लोम ने दिखाया है कि मोटर वैरिएबल#कॉम्पैक्टिफिकेशन प्रदान करने के लिए सिंगल-शीट हाइपरबोलाइड पर त्रिविम प्रक्षेपण का उपयोग कैसे किया जा सकता है। वास्तव में, hyperboloid वास्तविक प्रक्षेप्य चार-स्थान में एक चतुर्भुज का हिस्सा है। यह विधि स्पेसटाइम के अनुरूप समूह की समूह कार्रवाई (गणित) के लिए आधार कई गुना प्रदान करने के लिए उपयोग की जाने वाली विधि के समान है।[5]


प्रक्षेप्य स्थान

वास्तविक प्रक्षेप्य स्थान आरपीnयूक्लिडियन स्पेस 'आर' का एक संघनन हैn. प्रत्येक संभावित दिशा के लिए जिसमें 'आर' में बिंदु हैंn बच सकता है, अनंत पर एक नया बिंदु जोड़ा जाता है (किन्तु प्रत्येक दिशा को उसके विपरीत से पहचाना जाता है)। ऊपर दिए गए उदाहरण में हमने 'आर' का जो अलेक्जेंड्रॉफ़ एक-बिंदु संघनन बनाया है, वह वास्तव में 'आरपी' का होमियोमोर्फिक है।1. हालाँकि ध्यान दें कि प्रक्षेप्य तल RP2तल 'R' का एक-बिंदु संघनन नहीं है2चूंकि एक से अधिक अंक जोड़े गए हैं।

जटिल प्रक्षेप्य स्थान सी.पीn भी 'सी' का एक संक्षिप्तीकरण हैn; विमान 'सी' का अलेक्जेंड्रॉफ़ एक-बिंदु संघनन जटिल प्रक्षेप्य रेखा 'सीपी' (होमियोमोर्फिक) है1, जिसे बदले में एक गोले, रीमैन गोले से पहचाना जा सकता है।

प्रक्षेप्य स्थान पर जाना बीजगणितीय ज्यामिति में एक सामान्य उपकरण है क्योंकि अनंत पर जोड़े गए बिंदु कई प्रमेयों के सरल सूत्रीकरण की ओर ले जाते हैं। उदाहरण के लिए, आरपी में कोई दो अलग-अलग लाइनें2 बिल्कुल एक बिंदु पर प्रतिच्छेद करता है, एक कथन जो R में सत्य नहीं है2. अधिक आम तौर पर, बेज़ाउट का प्रमेय, जो प्रतिच्छेदन सिद्धांत में मौलिक है, प्रक्षेप्य स्थान में है, किन्तु एफ़िन स्पेस में नहीं। एफ़िन स्पेस और प्रोजेक्टिव स्पेस में इंटरसेक्शन का यह विशिष्ट व्यवहार कोहोमोलोजी रिंग ्स में बीजगणितीय टोपोलॉजी में परिलक्षित होता है - एफ़िन स्पेस का कोहोलॉजी तुच्छ है, जबकि प्रोजेक्टिव स्पेस का कोहोलॉजी गैर-तुच्छ है और इंटरसेक्शन सिद्धांत (आयाम और) की प्रमुख विशेषताओं को दर्शाता है। एक उपविविधता की डिग्री, प्रतिच्छेदन कप उत्पाद के लिए पोंकारे दोहरी है)।

मॉड्यूलि रिक्त स्थान के संघनन के लिए आम तौर पर कुछ अध:पतन की अनुमति की आवश्यकता होती है - उदाहरण के लिए, कुछ विलक्षणताओं या कम करने योग्य किस्मों की अनुमति देना। इसका उपयोग विशेष रूप से बीजगणितीय वक्रों के मॉड्यूली के डेलिग्ने-ममफोर्ड कॉम्पेक्टिफिकेशन में किया जाता है।

झूठ समूहों का संघनन और असतत उपसमूह

लाई समूहों के असतत अंतरिक्ष उपसमूहों के अध्ययन में, सह समुच्चय का भागफल स्थान (टोपोलॉजी) अक्सर केवल टोपोलॉजिकल की तुलना में समृद्ध स्तर पर संरचना को संरक्षित करने के लिए अधिक सूक्ष्म संघनन के लिए एक उम्मीदवार होता है।

उदाहरण के लिए, मॉड्यूलर वक्रों को प्रत्येक पुच्छ (विलक्षणता) के लिए एकल बिंदुओं को जोड़कर संकुचित किया जाता है, जिससे वे रीमैन सतह बन जाते हैं (और इसलिए, क्योंकि वे कॉम्पैक्ट, बीजगणितीय वक्र होते हैं)। यहां क्यूप्स एक अच्छे कारण के लिए हैं: वक्र जाली (समूह) के एक स्थान को पैरामीट्रिज करते हैं, और वे जाली अक्सर कई तरीकों से ('अनंत तक चले जाते हैं') पतित हो सकते हैं (कुछ सहायक संरचना को ध्यान में रखते हुए) 'स्तर)। क्यूस्प्स उन अलग-अलग 'अनंत की दिशाओं' के लिए खड़े हैं।

यह सब विमान में जाली के लिए है। एन-आयामी यूक्लिडियन स्थान में समान प्रश्न पूछे जा सकते हैं, उदाहरण के लिए SO(n) ∖ SLn(R) / SLn(Z). इसे संकुचित करना कठिन है। विभिन्न प्रकार के कॉम्पेक्टिफिकेशन हैं, जैसे कि बोरेल-सेरे कॉम्पेक्टिफिकेशन, रिडक्टिव बोरेल-सेरे कॉम्पेक्टिफिकेशन, और सातेक संघनन, जिन्हें बनाया जा सकता है।

अन्य संघनन सिद्धांत

  • अंत (टोपोलॉजी) और अभाज्य अंत के सिद्धांत।
  • कुछ 'सीमा' सिद्धांत जैसे ओपन मैनिफोल्ड की कॉलरिंग, मार्टिन सीमा, शिलोव सीमा और फुरस्टनबर्ग सीमा।
  • टोपोलॉजिकल समूह का बोहर संघनन लगभग आवधिक कार्यों के विचार से उत्पन्न होता है।
  • टोपोलॉजिकल रिंग के लिए रिंग के ऊपर प्रक्षेप्य रेखा इसे संकुचित कर सकती है।
  • हर्मिटियन सममित स्थान के भागफल का बेली-बोरेल संघनन।
  • बीजगणितीय समूहों के भागफल का अद्भुत संकलन।
  • स्थानीय रूप से उत्तल स्थान में एक साथ उत्तल उपसमुच्चय वाले संघनन को उत्तल संघनन कहा जाता है, उनकी अतिरिक्त रैखिक संरचना अनुमति देती है जैसे एक विभेदक कैलकुलस और अधिक उन्नत विचार विकसित करने के लिए उदा। वैरिएबल कैलकुलस या अनुकूलन सिद्धांत में छूट में।[6]


यह भी देखें

संदर्भ

  1. Munkres, James R. (2000). टोपोलॉजी (2nd ed.). Prentice Hall. ISBN 0-13-181629-2.
  2. Alexandroff, Pavel S. (1924), "Über die Metrisation der im Kleinen kompakten topologischen Räume", Mathematische Annalen, 92 (3–4): 294–301, doi:10.1007/BF01448011, JFM 50.0128.04
  3. Čech, Eduard (1937). "बाईकॉम्पैक्ट रिक्त स्थान पर". Annals of Mathematics. 38 (4): 823–844. doi:10.2307/1968839. hdl:10338.dmlcz/100420. JSTOR 1968839.
  4. Stone, Marshall H. (1937), "Applications of the theory of Boolean rings to general topology", Transactions of the American Mathematical Society, 41 (3): 375–481, doi:10.2307/1989788, JSTOR 1989788
  5. 15 parameter conformal group of spacetime described in Associative Composition Algebra/Homographies at Wikibooks
  6. Roubíček, T. (1997). ऑप्टिमाइज़ेशन थ्योरी और वेरिएशनल कैलकुलस में छूट. Berlin: W. de Gruyter. ISBN 3-11-014542-1.