विभेदी प्रवर्धक: Difference between revisions

From Vigyanwiki
(edit text)
(Edit text)
Line 42: Line 42:
लॉन्ग-टेल्ड पेयर को पुश-पुल सर्किट तकनीकों और माप पुलों के पहले के ज्ञान से विकसित किया गया था।<ref>{{cite journal |last1=Eglin |first1=J. M. |title=A Direct-Current Amplifier for Measuring Small Currents |journal=Journal of the Optical Society of America |date=1 May 1929 |volume=18 |issue=5 |pages=393–402 |doi=10.1364/JOSA.18.000393}}<!--|access-date=15 February 2016--></ref> एक प्रारंभिक सर्किट जो एक लॉन्ग-टेल्ड पेयर जैसा दिखता है, ब्रिटिश न्यूरोलॉजिस्ट ब्रायन मैथ्यूज द्वारा 1934 में प्रकाशित किया गया था<ref>{{cite journal |last1=Matthews |first1=Bryan H. C. |title=PROCEEDINGS OF THE PHYSIOLOGICAL SOCIETY |journal=The Journal of Physiology |date=1 December 1934 |volume=81 |issue=suppl |pages=28–29 |doi=10.1113/jphysiol.1934.sp003151 |doi-access=free}}</ref> और ऐसा लगता है कि यह एक वास्तविक लॉन्ग-टेल्ड पेयर होने का इरादा था, लेकिन एक ड्राइंग त्रुटि के साथ प्रकाशित हुआ था। 1936 में [[ एलन ब्लमलिन ]] द्वारा प्रस्तुत पेटेंट में जल्द से जल्द निश्चित लंबी पूंछ वाली जोड़ी सर्किट दिखाई देती है।<ref>{{cite web |title=US Patent 2185367 |url=https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US2185367.pdf |publisher=Freepatensonline.com |access-date=15 February 2016}}</ref> 1930 के दशक के अंत तक टोपोलॉजी अच्छी तरह से स्थापित हो गई थी और फ्रैंक ऑफनर (1937) सहित विभिन्न लेखकों द्वारा इसका वर्णन किया गया था।<ref>{{cite journal |last1=Offner |first1=Franklin |title=Push-Pull Resistance Coupled Amplifiers |journal=Review of Scientific Instruments |date=1937 |volume=8 |issue=1 |pages=20–21 |doi=10.1063/1.1752180}}<!--|access-date=15 February 2016--></ref> [[ ओटो स्मिथ ]] (1937)<ref>{{cite journal |last1=Schmitt |first1=Otto H. |title=Cathode Phase Inversion |journal=Review of Scientific Instruments |date=1941 |volume=12 |issue=11 |pages=548–551 |doi=10.1063/1.1769796 |url=https://www.aikenamps.com/images/Documents/schmt_a.pdf |access-date=15 February 2016}}</ref> और जान फ्रेडरिक टॉनीज़ (1938),<ref>{{cite web |title=US Patent 2147940 |url=https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US2147940.pdf |publisher=Google Inc. |access-date=16 February 2016}}</ref> द्वारा यह विशेष रूप से शारीरिक आवेगों का पता लगाने और माप के लिए उपयोग किया जाता था।<ref>Geddes, L. A. ''Who Invented the Differential Amplifier?''. IEEE Engineering in Medicine and Biology, May/June 1996, p.&nbsp;116–117.</ref>     
लॉन्ग-टेल्ड पेयर को पुश-पुल सर्किट तकनीकों और माप पुलों के पहले के ज्ञान से विकसित किया गया था।<ref>{{cite journal |last1=Eglin |first1=J. M. |title=A Direct-Current Amplifier for Measuring Small Currents |journal=Journal of the Optical Society of America |date=1 May 1929 |volume=18 |issue=5 |pages=393–402 |doi=10.1364/JOSA.18.000393}}<!--|access-date=15 February 2016--></ref> एक प्रारंभिक सर्किट जो एक लॉन्ग-टेल्ड पेयर जैसा दिखता है, ब्रिटिश न्यूरोलॉजिस्ट ब्रायन मैथ्यूज द्वारा 1934 में प्रकाशित किया गया था<ref>{{cite journal |last1=Matthews |first1=Bryan H. C. |title=PROCEEDINGS OF THE PHYSIOLOGICAL SOCIETY |journal=The Journal of Physiology |date=1 December 1934 |volume=81 |issue=suppl |pages=28–29 |doi=10.1113/jphysiol.1934.sp003151 |doi-access=free}}</ref> और ऐसा लगता है कि यह एक वास्तविक लॉन्ग-टेल्ड पेयर होने का इरादा था, लेकिन एक ड्राइंग त्रुटि के साथ प्रकाशित हुआ था। 1936 में [[ एलन ब्लमलिन ]] द्वारा प्रस्तुत पेटेंट में जल्द से जल्द निश्चित लंबी पूंछ वाली जोड़ी सर्किट दिखाई देती है।<ref>{{cite web |title=US Patent 2185367 |url=https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US2185367.pdf |publisher=Freepatensonline.com |access-date=15 February 2016}}</ref> 1930 के दशक के अंत तक टोपोलॉजी अच्छी तरह से स्थापित हो गई थी और फ्रैंक ऑफनर (1937) सहित विभिन्न लेखकों द्वारा इसका वर्णन किया गया था।<ref>{{cite journal |last1=Offner |first1=Franklin |title=Push-Pull Resistance Coupled Amplifiers |journal=Review of Scientific Instruments |date=1937 |volume=8 |issue=1 |pages=20–21 |doi=10.1063/1.1752180}}<!--|access-date=15 February 2016--></ref> [[ ओटो स्मिथ ]] (1937)<ref>{{cite journal |last1=Schmitt |first1=Otto H. |title=Cathode Phase Inversion |journal=Review of Scientific Instruments |date=1941 |volume=12 |issue=11 |pages=548–551 |doi=10.1063/1.1769796 |url=https://www.aikenamps.com/images/Documents/schmt_a.pdf |access-date=15 February 2016}}</ref> और जान फ्रेडरिक टॉनीज़ (1938),<ref>{{cite web |title=US Patent 2147940 |url=https://docs.google.com/viewer?url=patentimages.storage.googleapis.com/pdfs/US2147940.pdf |publisher=Google Inc. |access-date=16 February 2016}}</ref> द्वारा यह विशेष रूप से शारीरिक आवेगों का पता लगाने और माप के लिए उपयोग किया जाता था।<ref>Geddes, L. A. ''Who Invented the Differential Amplifier?''. IEEE Engineering in Medicine and Biology, May/June 1996, p.&nbsp;116–117.</ref>     


लॉन्ग-टेल्ड पेयर का प्रारंभिक ब्रिटिश कंप्यूटिंग में बहुत सफलतापूर्वक उपयोग किया गया था, विशेष रूप से [[ पायलट ऐस | पायलट ऐस]] मॉडल और वंशज,<ref group="nb">Details of the long-tailed pair circuitry used in early computing can be found in ''Alan Turing’s Automatic Computing Engine'' (Oxford University Press, 2005, {{ISBN|0-19-856593-3}}) in Part&nbsp;IV, "ELECTRONICS".</ref> मौरिस विल्क्स का ईडीएसएसी और शायद अन्य लोगों द्वारा डिज़ाइन किया गया जो ब्लमलिन या उसके साथियों के साथ काम करते थे। स्विच के रूप में उपयोग किए जाने पर लॉन्ग-टेल्ड पेयर में कई अनुकूल गुण होते हैं, बड़े पैमाने पर ट्यूब (ट्रांजिस्टर) विविधताओं के लिए प्रतिरक्षा (मशीन में 1,000 ट्यूब या अधिक होने पर बहुत महत्व), उच्च लाभ, स्थिरता प्राप्त करना, उच्च आगत प्रतिबाधा, मध्यम / निम्न निर्गत प्रतिबाधा, अच्छा क्लिपर (एक बहुत लंबी पूंछ के साथ), गैर-इनवर्टिंग ([[ EDSAC | EDSAC]] में कोई इनवर्टर नहीं है!) और बड़े निर्गत वोल्टेज का उतार-चढ़ाव आदि। एक नुकसान यह है कि निर्गत वोल्टेज स्विंग (आमतौर पर ± 10–20 वी) एक उच्च डीसी वोल्टेज (200 वी या तो) पर लगाया गया था, आमतौर पर वाइड-बैंड डीसी युग्मन के कुछ रूप में सिग्नल युग्मन में देखभाल की आवश्यकता होती है। उस समय के कई कंप्यूटरों ने केवल एसी-युग्मित स्पंद तर्क का उपयोग करके इस समस्या से बचने की कोशिश की, जिससे वे बहुत बड़े और अत्यधिक जटिल हो गए ([[ ENIAC | ENIAC]] : 20-अंकीय कैलकुलेटर के लिए 18,000 ट्यूब) या अविश्वसनीय हो गए। निर्वात नली कंप्यूटर की पहली पीढ़ी के बाद डीसी-युग्मित परिपथिकी आदर्श बन गई।
लॉन्ग-टेल्ड पेयर का प्रारंभिक ब्रिटिश कंप्यूटिंग में बहुत सफलतापूर्वक उपयोग किया गया था, विशेष रूप से [[ पायलट ऐस | पायलट]] मॉडल और वंशज,<ref group="nb">Details of the long-tailed pair circuitry used in early computing can be found in ''Alan Turing’s Automatic Computing Engine'' (Oxford University Press, 2005, {{ISBN|0-19-856593-3}}) in Part&nbsp;IV, "ELECTRONICS".</ref> मौरिस विल्क्स का ईडीएसएसी और शायद अन्य लोगों द्वारा डिज़ाइन किया गया जो ब्लमलिन या उसके साथियों के साथ काम करते थे। स्विच के रूप में उपयोग किए जाने पर लॉन्ग-टेल्ड पेयर में कई अनुकूल गुण होते हैं, बड़े पैमाने पर ट्यूब (ट्रांजिस्टर) विविधताओं के लिए प्रतिरक्षा (मशीन में 1,000 ट्यूब या अधिक होने पर बहुत महत्व), उच्च लाभ, स्थिरता प्राप्त करना, उच्च आगत प्रतिबाधा, मध्यम / निम्न निर्गत प्रतिबाधा, अच्छा क्लिपर (एक बहुत लंबी पूंछ के साथ), गैर-इनवर्टिंग ([[ EDSAC | EDSAC]] में कोई इनवर्टर नहीं है!) और बड़े निर्गत वोल्टेज का उतार-चढ़ाव आदि। एक नुकसान यह है कि निर्गत वोल्टेज स्विंग (आमतौर पर ± 10–20 वी) एक उच्च डीसी वोल्टेज (200 वी या तो) पर लगाया गया था, आमतौर पर वाइड-बैंड डीसी युग्मन के कुछ रूप में सिग्नल युग्मन में देखभाल की आवश्यकता होती है। उस समय के कई कंप्यूटरों ने केवल एसी-युग्मित स्पंद तर्क का उपयोग करके इस समस्या से बचने की कोशिश की, जिससे वे बहुत बड़े और अत्यधिक जटिल हो गए ([[ ENIAC | ENIAC]] : 20-अंकीय कैलकुलेटर के लिए 18,000 ट्यूब) या अविश्वसनीय हो गए। निर्वात नली कंप्यूटर की पहली पीढ़ी के बाद डीसी-युग्मित परिपथिकी आदर्श बन गई।


=== विन्यास ===
=== विन्यास ===
Line 88: Line 88:


==== एमिटर निरंतर चालू स्रोत ====
==== एमिटर निरंतर चालू स्रोत ====
[[File:Long tailed pair.svg|thumb|right|चित्र 3: [[ वर्तमान दर्पण | धारा प्रतिबिंब]] के साथ एक बेहतर लंबी-पूंछ वाली जोड़ी | धारा प्रतिबिंब लोड और निरंतर-वर्तमान बायसिंग  
चित्र 3: [[ वर्तमान दर्पण | धारा प्रतिबिंब]] के साथ एक बेहतर लंबी-पूंछ वाली जोड़ी | धारा प्रतिबिंब लोड और निरंतर-वर्तमान बायसिंग  


सामान्य विधा पर निरंतर कलेक्टर वोल्टेज सुनिश्चित करने के लिए मौन धारा को स्थिर रहना पड़ता है। विभेदी निर्गत के मामले में यह आवश्यकता इतनी महत्वपूर्ण नहीं है क्योंकि दो कलेक्टर वोल्टेज एक साथ अलग-अलग होंगे लेकिन उनका अंतर (निर्गत वोल्टेज) अलग नहीं होगा। लेकिन सिंगल-एंडेड निर्गत के मामले में, निरंतर धारा रखना बेहद जरूरी है क्योंकि निर्गत कलेक्टर वोल्टेज अलग-अलग होगा। इस प्रकार वर्तमान स्रोत का प्रतिरोध जितना अधिक होगा <math>R_{\text{e}}</math>, निचला (बेहतर) सामान्य-मोड लाभ है <math>A_{\text{c}}</math>. साझा उत्सर्जक नोड और आपूर्ति रेल (एनपीएन के लिए नकारात्मक और पीएनपी ट्रांजिस्टर के लिए सकारात्मक) के बीच बहुत अधिक प्रतिरोध के साथ एक तत्व (प्रतिरोधक) को जोड़कर आवश्यक निरंतर धारा का उत्पादन किया जा सकता है, लेकिन इसके लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होगी। इसीलिए, अधिक परिष्कृत डिजाइनों में, उच्च अंतर (गतिशील) प्रतिरोध वाले एक तत्व को लॉन्ग टेल (चित्रा 3) के लिए प्रतिस्थापित किया जाता है, जो एक निरंतर वर्तमान स्रोत/सिंक का अनुमान लगाता है। यह आमतौर पर अपने उच्च अनुपालन वोल्टेज (निर्गत ट्रांजिस्टर में छोटे वोल्टेज ड्रॉप) के कारण धारा प्रतिबिंब द्वारा कार्यान्वित किया जाता है।
सामान्य विधा पर निरंतर कलेक्टर वोल्टेज सुनिश्चित करने के लिए मौन धारा को स्थिर रहना पड़ता है। विभेदी निर्गत के मामले में यह आवश्यकता इतनी महत्वपूर्ण नहीं है क्योंकि दो कलेक्टर वोल्टेज एक साथ अलग-अलग होंगे लेकिन उनका अंतर (निर्गत वोल्टेज) अलग नहीं होगा। लेकिन सिंगल-एंडेड निर्गत के मामले में, निरंतर धारा रखना बेहद जरूरी है क्योंकि निर्गत कलेक्टर वोल्टेज अलग-अलग होगा। इस प्रकार वर्तमान स्रोत का प्रतिरोध जितना अधिक होगा <math>R_{\text{e}}</math>, निचला (बेहतर) सामान्य-मोड लाभ है <math>A_{\text{c}}</math>. साझा उत्सर्जक नोड और आपूर्ति रेल (एनपीएन के लिए नकारात्मक और पीएनपी ट्रांजिस्टर के लिए सकारात्मक) के बीच बहुत अधिक प्रतिरोध के साथ एक तत्व (प्रतिरोधक) को जोड़कर आवश्यक निरंतर धारा का उत्पादन किया जा सकता है, लेकिन इसके लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होगी। इसीलिए, अधिक परिष्कृत डिजाइनों में, उच्च अंतर (गतिशील) प्रतिरोध वाले एक तत्व को लॉन्ग टेल (चित्रा 3) के लिए प्रतिस्थापित किया जाता है, जो एक निरंतर वर्तमान स्रोत/सिंक का अनुमान लगाता है। यह आमतौर पर अपने उच्च अनुपालन वोल्टेज (निर्गत ट्रांजिस्टर में छोटे वोल्टेज ड्रॉप) के कारण धारा प्रतिबिंब द्वारा कार्यान्वित किया जाता है।
Line 126: Line 126:
=== सममित प्रतिक्रिया नेटवर्क सामान्य-विधा लाभ और सामान्य-विधा पूर्वाग्रह को समाप्त करता है ===
=== सममित प्रतिक्रिया नेटवर्क सामान्य-विधा लाभ और सामान्य-विधा पूर्वाग्रह को समाप्त करता है ===
[[File:Op-Amp Differential Amplifier input impedence and common bias.svg|thumb|280px|चित्रा 6: गैर-आदर्श ऑप-एम्प के साथ विभेदक प्रवर्धक: आगत पूर्वाग्रह वर्तमान और अंतर आगत प्रतिबाधा]]
[[File:Op-Amp Differential Amplifier input impedence and common bias.svg|thumb|280px|चित्रा 6: गैर-आदर्श ऑप-एम्प के साथ विभेदक प्रवर्धक: आगत पूर्वाग्रह वर्तमान और अंतर आगत प्रतिबाधा]]
यदि परिचालन प्रवर्धक (गैर-आदर्श) आगत बायस करंट या विभेदी आगत प्रतिबाधा एक महत्वपूर्ण प्रभाव है, तो कोई एक प्रतिक्रिया नेटवर्क का चयन कर सकता है जो सामान्य-विधा आगत सिग्नल और बायस के प्रभाव को बेहतर बनाता है। चित्र 6 में, वर्तमान जनरेटर प्रत्येक टर्मिनल पर आगत बायस करंट को मॉडल करते हैं; मैं<sup>+</sup><sub>b</sub> और मैं<sup>-</sup><sub>b</sub> टर्मिनलों पर आगत बायस करंट का प्रतिनिधित्व करते हैं V<sup>+</sup> और V<sup>-</sup> क्रमशः।
यदि परिचालन प्रवर्धक (गैर-आदर्श) आगत बायस करंट या विभेदी आगत प्रतिबाधा एक महत्वपूर्ण प्रभाव है, तो कोई एक प्रतिक्रिया नेटवर्क का चयन कर सकता है जो सामान्य-विधा आगत सिग्नल और बायस के प्रभाव को बेहतर बनाता है। चित्र में, वर्तमान जनरेटर प्रत्येक टर्मिनल पर आगत बायस करंट को मॉडल करते हैं; I<sup>+</sup><sub>b</sub> और I<sup>-</sup><sub>b</sub> टर्मिनलों पर आगत बायस करंट का प्रतिनिधित्व करते हैं V<sup>+</sup> और V<sup>-</sup> क्रमशः।


थेवेनिन कि प्रमेय|Thevenin V . को चलाने वाले नेटवर्क के समतुल्य<sup>+</sup> टर्मिनल में वोल्टेज V . होता है<sup>+</sup>' और प्रतिबाधा R<sup>+</sup>':
थेवेनिन कि प्रमेय को चलाने वाले नेटवर्क के समतुल्य V<sup>+</sup> टर्मिनल में वोल्टेज V<sup>+</sup>' और प्रतिबाधा R<sup>+</sup>':
: <math>{V^+}' = V^+_\text{in} R^+_\parallel / R^+_\text{i} - I^+_\text{b} R^+_\parallel; \quad \text{where} \quad {R^+}' = R^+_\parallel  = R^+_\text{i} \parallel R^+_\text{f},</math>
: <math>{V^+}' = V^+_\text{in} R^+_\parallel / R^+_\text{i} - I^+_\text{b} R^+_\parallel; \quad \text{जहाँ} \quad {R^+}' = R^+_\parallel  = R^+_\text{i} \parallel R^+_\text{f},</math>
जबकि V . को चलाने वाले नेटवर्क के लिए<sup>-</sup> टर्मिनल:
जबकि V . को चलाने वाले नेटवर्क के लिए<sup>-</sup> टर्मिनल:
: <math>{V^-}' =  V^-_\text{in} R^-_\parallel / R^-_\text{i} + V_\text{out} R^-_\parallel / R^-_\text{f} - I^-_\text{b} R^-_\parallel; \quad \text{where} \quad {R^-}' = R^-_\parallel = R^-_\text{i} \parallel R^-_\text{f}.</math>
: <math>{V^-}' =  V^-_\text{in} R^-_\parallel / R^-_\text{i} + V_\text{out} R^-_\parallel / R^-_\text{f} - I^-_\text{b} R^-_\parallel; \quad \text{जहाँ} \quad {R^-}' = R^-_\parallel = R^-_\text{i} \parallel R^-_\text{f}.</math>
ऑप-एम्प का निर्गत सिर्फ ओपन-लूप गेन है A<sub>ol</sub> डिफरेंशियल आगत करंट का गुणा मैं डिफरेंशियल आगत इम्पीडेंस 2R<sub>d</sub>, इसलिए
ऑप-एम्प का निर्गत सिर्फ ओपन-लूप गेन है A<sub>ol</sub> विभेदी आगत करंट का गुणा I विभेदी आगत इम्पीडेंस 2R<sub>d</sub>, इसलिए
: <math> V_\text{out} = A_\text{ol} \cdot 2 R_\text{d} \frac{{V^+}' - {V^-}'}{2R_\parallel + 2R_\text{d}} = ({V^+}' - {V^-}') A_\text{ol} R_\parallel / (R_\parallel \parallel R_\text{d}),</math>
: <math> V_\text{out} = A_\text{ol} \cdot 2 R_\text{d} \frac{{V^+}' - {V^-}'}{2R_\parallel + 2R_\text{d}} = ({V^+}' - {V^-}') A_\text{ol} R_\parallel / (R_\parallel \parallel R_\text{d}),</math>
जहां आर<sub>||</sub> R . का औसत है<sup>+</sup><sub>||</sub> और आर<sup>-</sup><sub>||</sub>.
जहां आर<sub>||</sub> R . का औसत है<sup>+</sup><sub>||</sub> और आर<sup>-</sup><sub>||</sub>.
Line 140: Line 140:
संबंध में जिसके परिणामस्वरूप
संबंध में जिसके परिणामस्वरूप
: <math>V^+_\text{in} - V^-_\text{in} - R_\text{i} I^\Delta_\text{b} = V_\text{out} \left[ \frac{R_\text{i}}{R_\text{f}} + \frac{1}{A_\text{ol} \frac{R_\text{i}}{R_\text{i} \parallel R_\text{f} \parallel R_\text{d}}}\right],</math>
: <math>V^+_\text{in} - V^-_\text{in} - R_\text{i} I^\Delta_\text{b} = V_\text{out} \left[ \frac{R_\text{i}}{R_\text{f}} + \frac{1}{A_\text{ol} \frac{R_\text{i}}{R_\text{i} \parallel R_\text{f} \parallel R_\text{d}}}\right],</math>
जिसका अर्थ है कि अंतर संकेत के लिए बंद-लूप लाभ वी है<sup>+</sup><sub>in</sub>- वी<sup>-</sup><sub>in</sub>, लेकिन सामान्य-मोड लाभ समान रूप से शून्य है।
जिसका अर्थ है कि अंतर संकेत के लिए बंद-लूप लाभ V<sup>+</sup><sub>in</sub>- V<sup>-</sup><sub>in</sub>, लेकिन सामान्य-विधा लाभ समान रूप से शून्य है।


इसका यह भी अर्थ है कि सामान्य-मोड आगत पूर्वाग्रह वर्तमान को रद्द कर दिया गया है, केवल आगत ऑफसेट वर्तमान I को छोड़कर<sup>डी</sup><sub>b</sub> = मैं<sup>+</sup><sub>b</sub>- मैं<sup>-</sup><sub>b</sub> अभी भी मौजूद है, और R . के गुणांक के साथ<sub>i</sub>. यह ऐसा है जैसे आगत ऑफ़सेट करंट एक आगत ऑफ़सेट वोल्टेज के बराबर है जो एक आगत प्रतिरोध R . पर काम करता है<sub>i</sub>, जो आगत टर्मिनलों में फीडबैक नेटवर्क का स्रोत प्रतिरोध है।
इसका यह भी अर्थ है कि सामान्य-मोड आगत पूर्वाग्रह धारा को रद्द कर दिया गया है, केवल आगत ऑफसेट धारा IΔb = I+b − I−b,और R<sub>i</sub> के गुणांक के साथ अभी भी मौजूद है, यह ऐसा है जैसे आगत ऑफ़सेट करंट एक आगत ऑफ़सेट वोल्टेज के बराबर है जो एक आगत प्रतिरोध R<sub>i में अभिनय करता है,</sub> जो आगत टर्मिनलों में प्रतिक्रिया नेटवर्क का स्रोत प्रतिरोध है।


अंत में, जब तक ओपन-लूप वोल्टेज लाभ A<sub>ol</sub> एकता से बहुत बड़ा है, बंद-लूप वोल्टेज लाभ R . है<sub>f</sub>/आर<sub>i</sub>, वर्चुअल ग्राउंड के रूप में ज्ञात नियम-अंगूठे विश्लेषण के माध्यम से प्राप्त मूल्य।<ref
अंत में, जब तक ओपन-लूप वोल्टेज लाभ A<sub>ol</sub> इकाई से बहुत बड़ा है, बंद-लूप वोल्टेज लाभ R<sub>f</sub>/R<sub>i</sub>, वर्चुअल ग्राउंड के रूप में ज्ञात नियम-अंगूठे विश्लेषण के माध्यम से प्राप्त होगा ।<ref
group= nb >क्लोज्ड-लूप कॉमन-मोड गेन के शून्य होने के लिए केवल यह आवश्यक है कि प्रतिरोधों का अनुपात R<sub>f</sub> / आर<sub>i</sub> इनवर्टिंग और नॉन-इनवर्टिंग पैरों में मिलान किया जाना चाहिए। इनपुट पूर्वाग्रह धाराओं को रद्द करने के लिए, यहां दिए गए सख्त संबंध को प्राप्त करना होगा।</ref>
group= nb >क्लोज्ड-लूप कॉमन-मोड गेन के शून्य होने के लिए केवल यह आवश्यक है कि प्रतिरोधों का अनुपात R<sub>f</sub> / आर<sub>i</sub> इनवर्टिंग और नॉन-इनवर्टिंग पैरों में मिलान किया जाना चाहिए। इनपुट पूर्वाग्रह धाराओं को रद्द करने के लिए, यहां दिए गए सख्त संबंध को प्राप्त करना होगा।</ref>


Line 153: Line 153:
== यह भी देखें ==
== यह भी देखें ==
*[[ गिल्बर्ट सेल ]]
*[[ गिल्बर्ट सेल ]]
* इंस्ट्रुमेंटेशन प्रवर्धक
* यंत्रीकरण प्रवर्धक
* ऑपरेशनल प्रवर्धक एप्लीकेशन#डिफरेंशियल प्रवर्धक|ऑप-एम्प डिफरेंशियल कॉन्फ़िगरेशन
* परिचालन विभेदी प्रवर्धक
* एमिटर-युग्मित तर्क
* एमिटर-युग्मित तर्क


Line 165: Line 165:
*एकीकृत परिपथ
*एकीकृत परिपथ
*अवरोध
*अवरोध
*आम emitter
*आम एमिटर
*आभासी मैदान
*आभासी मैदान
*सतत प्रवाह
*सतत प्रवाह
*इंस्ट्रूमेंटेशन एम्पलीफायर
*यंत्रीकरण प्रवर्धक
*नकारात्मक प्रतिपुष्टि
*नकारात्मक प्रतिपुष्टि



Revision as of 23:26, 30 October 2022

परिचालन प्रवर्धक प्रतीक। इनवर्टिंग और नॉन-इनवर्टिंग आगत को - और + द्वारा प्रवर्धक त्रिकोण में रखा जाता है। वीs+ और वीs− बिजली आपूर्ति वोल्टेज हैं; उन्हें अक्सर सरलता के लिए आरेख से हटा दिया जाता है लेकिन वास्तविक सर्किट में मौजूद होना चाहिए।

विभेदी प्रवर्धक एक प्रकार का इलेक्ट्रॉनिक प्रवर्धक है जो दो आगत वोल्टेज के बीच के अंतर को बढ़ाता है लेकिन दो आगत के लिए किसी भी वोल्टेज को दबा देता है।[1] यह दो आगत के साथ एक एनालॉग सर्किट है तथा और एक निर्गत , जिसमें निर्गत आदर्श रूप से दो वोल्टेज के बीच अंतर के लिए आनुपातिकता (गणित) है:

जहाँ प्रवर्धक का लाभ (इलेक्ट्रॉनिक्स) है।

एकल प्रवर्धको को आमतौर पर या तो एक मानक ऑपरेशनल प्रवर्धक में उपयुक्त प्रतिक्रिया प्रतिरोधों को जोड़कर या आंतरिक प्रतिक्रिया प्रतिरोधों वाले एक समर्पित एकीकृत सर्किट के साथ लागू किया जाता है। यह एनालॉग संकेत को संभालने वाले बड़े एकीकृत सर्किट का एक सामान्य उप-घटक भी है।

सिद्धांत

एक आदर्श विभेदी प्रवर्धक का निर्गत किसके द्वारा दिया जाता है

जहाँ पर तथा आगत वोल्टेज हैं, और अंतर लाभ है।

व्यवहार में, हालांकि दो आगत के लिए लाभ काफी समान नहीं है। उदाहरण के लिए इसका मतलब है, कि अगर तथा बराबर हैं तो निर्गत वोल्टेज शून्य नहीं होगा, ऐसा आदर्श स्थिति में होगा। एक अंतर प्रवर्धक के निर्गत के लिए एक और यथार्थवादी अभिव्यक्ति में दूसरा शब्द शामिल है:

जहाँ पर प्रवर्धक का उभयनिष्ठ-मोड लाभ कहलाता है।

चूंकि अंतर प्रवर्धको का उपयोग अक्सर शोर या पूर्वाग्रह वोल्टेज को कम करने के लिए किया जाता है जो दोनों आगत पर दिखाई देते हैं, कम सामान्य-मोड लाभ आमतौर पर वांछित होता है।

सामान्य मोड अस्वीकृति अनुपात (CMRR), जिसे आमतौर पर विभेदी-विधा प्राप्त और सामान्य-विधा प्राप्त के बीच के अनुपात के रूप में परिभाषित किया जाता है, प्रवर्धक की क्षमता सटीक रूप से वोल्टेज को रद्द करने की क्षमता को इंगित करता है जो दोनों आगत के लिए सामान्य हैं। सामान्य-मोड अस्वीकृति अनुपात को परिभाषित किया गया है-

पूरी तरह से सममित अंतर प्रवर्धक में, शून्य है और सीएमआरआर अनंत है। ध्यान दें कि एक अंतर प्रवर्धक आगत के साथ एक से अधिक प्रवर्धक का सामान्य रूप है, अंतर प्रवर्धक के एक आगत को संपर्कन करके, एक एकल-समाप्त प्रवर्धक परिणाम प्राप्त करता हैं।

लॉन्ग-टेल्ड पेयर

ऐतिहासिक पृष्ठभूमि

आधुनिक डिफरेंशियल प्रवर्धको को आमतौर पर एक बुनियादी दो-ट्रांजिस्टर सर्किट के साथ लागू किया जाता है जिसे लॉन्ग-टेल्ड पेयर या विभेदी पेयर कहा जाता है। यह सर्किट मूल रूप से निर्वात नली की एक जोड़ी का उपयोग करके लागू किया गया था। सर्किट वर्तमान लाभ वाले सभी तीन-टर्मिनल उपकरणों के लिए उसी तरह काम करता है। लॉन्ग-टेल प्रतिरोधक सर्किट के पूर्वाग्रह बिंदु काफी हद तक ओम के नियम द्वारा और कम सक्रिय-घटक विशेषताओं द्वारा निर्धारित किए जाते हैं।

लॉन्ग-टेल्ड पेयर को पुश-पुल सर्किट तकनीकों और माप पुलों के पहले के ज्ञान से विकसित किया गया था।[2] एक प्रारंभिक सर्किट जो एक लॉन्ग-टेल्ड पेयर जैसा दिखता है, ब्रिटिश न्यूरोलॉजिस्ट ब्रायन मैथ्यूज द्वारा 1934 में प्रकाशित किया गया था[3] और ऐसा लगता है कि यह एक वास्तविक लॉन्ग-टेल्ड पेयर होने का इरादा था, लेकिन एक ड्राइंग त्रुटि के साथ प्रकाशित हुआ था। 1936 में एलन ब्लमलिन द्वारा प्रस्तुत पेटेंट में जल्द से जल्द निश्चित लंबी पूंछ वाली जोड़ी सर्किट दिखाई देती है।[4] 1930 के दशक के अंत तक टोपोलॉजी अच्छी तरह से स्थापित हो गई थी और फ्रैंक ऑफनर (1937) सहित विभिन्न लेखकों द्वारा इसका वर्णन किया गया था।[5] ओटो स्मिथ (1937)[6] और जान फ्रेडरिक टॉनीज़ (1938),[7] द्वारा यह विशेष रूप से शारीरिक आवेगों का पता लगाने और माप के लिए उपयोग किया जाता था।[8]

लॉन्ग-टेल्ड पेयर का प्रारंभिक ब्रिटिश कंप्यूटिंग में बहुत सफलतापूर्वक उपयोग किया गया था, विशेष रूप से पायलट मॉडल और वंशज,[nb 1] मौरिस विल्क्स का ईडीएसएसी और शायद अन्य लोगों द्वारा डिज़ाइन किया गया जो ब्लमलिन या उसके साथियों के साथ काम करते थे। स्विच के रूप में उपयोग किए जाने पर लॉन्ग-टेल्ड पेयर में कई अनुकूल गुण होते हैं, बड़े पैमाने पर ट्यूब (ट्रांजिस्टर) विविधताओं के लिए प्रतिरक्षा (मशीन में 1,000 ट्यूब या अधिक होने पर बहुत महत्व), उच्च लाभ, स्थिरता प्राप्त करना, उच्च आगत प्रतिबाधा, मध्यम / निम्न निर्गत प्रतिबाधा, अच्छा क्लिपर (एक बहुत लंबी पूंछ के साथ), गैर-इनवर्टिंग ( EDSAC में कोई इनवर्टर नहीं है!) और बड़े निर्गत वोल्टेज का उतार-चढ़ाव आदि। एक नुकसान यह है कि निर्गत वोल्टेज स्विंग (आमतौर पर ± 10–20 वी) एक उच्च डीसी वोल्टेज (200 वी या तो) पर लगाया गया था, आमतौर पर वाइड-बैंड डीसी युग्मन के कुछ रूप में सिग्नल युग्मन में देखभाल की आवश्यकता होती है। उस समय के कई कंप्यूटरों ने केवल एसी-युग्मित स्पंद तर्क का उपयोग करके इस समस्या से बचने की कोशिश की, जिससे वे बहुत बड़े और अत्यधिक जटिल हो गए ( ENIAC : 20-अंकीय कैलकुलेटर के लिए 18,000 ट्यूब) या अविश्वसनीय हो गए। निर्वात नली कंप्यूटर की पहली पीढ़ी के बाद डीसी-युग्मित परिपथिकी आदर्श बन गई।

विन्यास

एक विभेदक (लॉन्ग-टेल,[nb 2] एमिटर-युग्मित) जोड़ी प्रवर्धक में सामान्य (एमिटर डिजनरेशन, सामान्य स्रोत या वाल्व प्रवर्धक ) अध: पतन के साथ दो प्रवर्धन चरण होते हैं।

विभेदक निर्गत

चित्र 2: एक क्लासिक लंबी पूंछ वाली जोड़ी

दो आगत और दो निर्गत के साथ, यह एक अंतर प्रवर्धक चरण (चित्रा 2) बनाता है। दो आधार (या ग्रिड या गेट) ऐसे आगत हैं जो ट्रांजिस्टर जोड़ी द्वारा अलग-अलग प्रवर्धित (घटाए और गुणा) किए जाते हैं, उन्हें एक अंतर (संतुलित) आगत संकेत के साथ रखा जा सकता है, या एक आगत को प्रावस्था विभाजक परिपथ बनाने के लिए ग्राउंड किया जा सकता है। विभेदक निर्गत वाला प्रवर्धक असंबद्ध भार या विभेदक आगत के साथ दूसरे चरण को ड्राइव कर सकता है।

एकलशिरा निर्गम

यदि विभेदक निर्गत वांछित नहीं है, तो केवल एक निर्गत का उपयोग किया जा सकता है (केवल एक कलेक्टर (या एनोड या ड्रेन) से लिया गया है), अन्य निर्गत की परवाह किए बिना, इस विन्यास को एकलशिरा निर्गत के रूप में जाना जाता है। अंतर निर्गत के साथ चरण का आधा मुनाफा है। मुनाफा का त्याग करने से बचने के लिए, एकलशिरा कनवर्टर के लिए एक अंतर का उपयोग किया जा सकता है। इसे अक्सर वर्तमान दर्पण के रूप में लागू किया जाता है ( चित्र 3, नीचे)।

एकलशिरा आगत

विभेदक जोड़े को एकलशिरा आगत के साथ प्रवर्धक के रूप में इस्तेमाल किया जा सकता है यदि आगत में से एक को ग्राउंडेड या रेफरेंस वोल्टेज के लिए तय किया जाता है (आमतौर पर, दूसरे कलेक्टर को एकलशिरा निर्गत के रूप में उपयोग किया जाता है) इस व्यवस्था के बारे में कैस्केड कॉमन-कलेक्टर और कॉमन-बेस स्टेज या बफर्ड कॉमन-बेस स्टेज के रूप में सोचा जा सकता है।[nb 3]

एमिटर-युग्मित प्रवर्धक को तापमान के बहाव के लिए प्रतिकारित किया जाता है, VBE रद्द कर दिया जाता है, और मिलर प्रभाव और ट्रांजिस्टर संतृप्ति से बचा जाता है। यही कारण है कि इसका उपयोग एमिटर-युग्मित प्रवर्धकों (मिलर प्रभाव से बचने), चरण स्प्लिटर सर्किट (दो उलटा वोल्टेज प्राप्त करने), ईसीएल गेट्स और स्विच (ट्रांजिस्टर संतृप्ति से बचने) आदि बनाने के लिए किया जाता है।

संचालन

सर्किट संचालन की व्याख्या करने के लिए, चार विशेष विधा नीचे अलग-थलग हैं, हालांकि व्यवहार में, उनमें से कुछ एक साथ कार्य करते हैं और उनके प्रभाव को आरोपित किया जाता है।

पूर्वाग्रह

क्लासिक प्रवर्धन चरणों के विपरीत जो द्विध्रुवी ट्रांजिस्टर पूर्वाग्रह हैं (और इसलिए वे अत्यधिक β-निर्भर हैं), विभेदक जोड़ी सीधे उत्सर्जक की ओर से कुल स्थिर धारा को डुबोकर/इंजेक्शन करके पक्षपाती है। श्रृंखला नकारात्मक प्रतिक्रिया (एमिटर डिजनरेशन) ट्रांजिस्टर को वोल्टेज स्थिरक के रूप में कार्य करती है, यह उन्हें अपने VBE वोल्टेज (आधार धाराएं) को उनके कलेक्टर-एमिटर जंक्शनों के माध्यम से स्थिर धारा को पारित करने के लिए समायोजित करने के लिए मजबूर करता है।[nb 4] इसलिए नकारात्मक प्रतिक्रिया के कारण, स्थिर धारा ट्रांजिस्टर β पर थोड़ा ही निर्भर करती है।

अर्ध-संग्राहक धाराओं को उत्पन्न करने के लिए आवश्यक बायसिंग बेस धाराएं आमतौर पर जमीन से आती हैं, आगत स्रोतों से गुजरती हैं और आधारों में प्रवेश करती हैं। इसलिए, बायसिंग करंट के लिए पथ सुनिश्चित करने के लिए स्रोतों को गैल्वेनिक (डीसी) होना चाहिए और उन पर महत्वपूर्ण वोल्टेज ड्रॉप न बनाने के लिए पर्याप्त कम प्रतिरोधक होना चाहिए। अन्यथा, अतिरिक्त डीसी तत्वों को आधार और जमीन (या सकारात्मक बिजली की आपूर्ति) के बीच जोड़ा जाना चाहिए।

सामान्य विधा

सामान्य मोड में (दो आगत वोल्टेज एक ही दिशा में बदलते हैं), दो वोल्टेज (एमिटर) अनुयायी आम उच्च-प्रतिरोधक एमिटर लोड (लंबी पूंछ) पर एक साथ काम करते हुए एक दूसरे के साथ सहयोग करते हैं। वे सभी एक साथ सामान्य उत्सर्जक बिंदु के वोल्टेज को बढ़ाते या घटाते हैं (लाक्षणिक रूप से बोलते हुए, वे एक साथ खींचते हैं या इसे नीचे खींचते हैं ताकि यह आगे बढ़े)। इसके अलावा, डायनामिक लोड आगत वोल्टेज के समान दिशा में अपने तत्काल ओमिक प्रतिरोध को बदलकर उनकी मदद करता है (वोल्टेज बढ़ने पर यह बढ़ता है और इसके विपरीत।) इस प्रकार दो आपूर्ति रेल के बीच निरंतर कुल प्रतिरोध को बनाए रखता है। एक पूर्ण (100%) नकारात्मक प्रतिक्रिया है; दो आगत आधार वोल्टेज और एमिटर वोल्टेज एक साथ बदलते हैं जबकि कलेक्टर करंट और टोटल करंट नहीं बदलते हैं। नतीजतन, आउटपुट कलेक्टर वोल्टेज भी नहीं बदलता है।

विभेदी विधा

सामान्य, विभेदी विधा में (दो आगत वोल्टेज विपरीत दिशाओं में बदलते हैं), दो वोल्टेज (एमिटर) अनुयायी एक-दूसरे का विरोध करते हैं, जबकि उनमें से एक आम एमिटर बिंन्दु के वोल्टेज को बढ़ाने की कोशिश करता है, दूसरा इसे कम करने की कोशिश करता है (लाक्षणिक रूप से बोलना, उनमें से एक उभयनिष्ठ बिंदु को ऊपर खींचता है जबकि दूसरा उसे नीचे खींचता है ताकि वह अचल रहे) और इसके विपरीत। तो, सामान्य बिंदु अपने वोल्टेज को नहीं बदलता है, यह सामान्य-विधा आगत वोल्टेज द्वारा निर्धारित परिमाण के साथ एक आभासी जमीन की तरह व्यवहार करता है। उच्च-प्रतिरोध उत्सर्जक तत्व कोई भूमिका नहीं निभाता है - इसे अन्य निम्न-प्रतिरोध उत्सर्जक अनुयायी द्वारा हिलाया जाता है। कोई नकारात्मक प्रतिक्रिया नहीं है, क्योंकि आगत बेस वोल्टेज बदलने पर एमिटर वोल्टेज बिल्कुल नहीं बदलता है। सामान्य स्थिर धारा दो ट्रांजिस्टर के बीच सख्ती से चलती है और निर्गत कलेक्टर वोल्टेज सख्ती से बदलते हैं। दो ट्रांजिस्टर पारस्परिक रूप से अपने उत्सर्जकों को जमीन पर रखते हैं; इसलिए, हालांकि वे सामान्य-संग्राहक चरण हैं, वे वास्तव में अधिकतम लाभ के साथ सामान्य-उत्सर्जक चरणों के रूप में कार्य करते हैं। डिवाइस मापदंडों में भिन्नता से पूर्वाग्रह स्थिरता और स्वतंत्रता को अपेक्षाकृत छोटे प्रतिरोधों के साथ कैथोड/एमिटर प्रतिरोधों के माध्यम से पेश की गई नकारात्मक प्रतिक्रिया द्वारा सुधारा जा सकता है।

अतिसंचालित, यदि आगत विभेदी वोल्टेज महत्वपूर्ण रूप से बदलता है (लगभग सौ मिलीवोल्ट से अधिक), तो कम आगत वोल्टेज द्वारा संचालित ट्रांजिस्टर बंद हो जाता है और आम कलेक्टर वोल्टेज सकारात्मक आपूर्ति रेल तक पहुंच जाता है। उच्च ओवरड्राइव पर आधार-एमिटर जंक्शन उलट जाता है। अन्य ट्रांजिस्टर (उच्च इनपुट वोल्टेज द्वारा संचालित) सभी करंट को चलाता है। यदि संग्राहक पर रोकनेवाला अपेक्षाकृत बड़ा है, तो ट्रांजिस्टर संतृप्त हो जाएगा। अपेक्षाकृत छोटे कलेक्टर रोकनेवाला और मध्यम ओवरड्राइव के साथ, एमिटर अभी भी संतृप्ति के बिना आगत सिग्नल का पालन कर सकता है। इस मोड का उपयोग विभेदी स्विच और एमिटर-युग्मित तर्क गेट्स में किया जाता है।

टूट - फूट, यदि आगत वोल्टेज बढ़ता रहता है और आधार-एमिटर बिजली की ख़राबी से अधिक हो जाता है, तो कम आगत वोल्टेज द्वारा संचालित ट्रांजिस्टर का बेस-एमिटर जंक्शन टूट जाता है। यदि आगत स्रोत कम प्रतिरोधक हैं, तो दो आगत स्रोतों के बीच डायोड ब्रिज के माध्यम से एक असीमित धारा सीधे प्रवाहित होगी और उन्हें नुकसान पहुंचाएगी।

सामान्य मोड में, एमिटर वोल्टेज आगत वोल्टेज भिन्नताओं का अनुसरण करता है; एक पूर्ण नकारात्मक प्रतिक्रिया है और लाभ न्यूनतम है।विभेदी विधा में, एमिटर वोल्टेज निश्चित होता है (तत्काल सामान्य आगत वोल्टेज के बराबर), कोई नकारात्मक प्रतिक्रिया नहीं है और लाभ अधिकतम है।

विभेदक प्रवर्धक सुधार

एमिटर निरंतर चालू स्रोत

चित्र 3: धारा प्रतिबिंब के साथ एक बेहतर लंबी-पूंछ वाली जोड़ी | धारा प्रतिबिंब लोड और निरंतर-वर्तमान बायसिंग

सामान्य विधा पर निरंतर कलेक्टर वोल्टेज सुनिश्चित करने के लिए मौन धारा को स्थिर रहना पड़ता है। विभेदी निर्गत के मामले में यह आवश्यकता इतनी महत्वपूर्ण नहीं है क्योंकि दो कलेक्टर वोल्टेज एक साथ अलग-अलग होंगे लेकिन उनका अंतर (निर्गत वोल्टेज) अलग नहीं होगा। लेकिन सिंगल-एंडेड निर्गत के मामले में, निरंतर धारा रखना बेहद जरूरी है क्योंकि निर्गत कलेक्टर वोल्टेज अलग-अलग होगा। इस प्रकार वर्तमान स्रोत का प्रतिरोध जितना अधिक होगा , निचला (बेहतर) सामान्य-मोड लाभ है . साझा उत्सर्जक नोड और आपूर्ति रेल (एनपीएन के लिए नकारात्मक और पीएनपी ट्रांजिस्टर के लिए सकारात्मक) के बीच बहुत अधिक प्रतिरोध के साथ एक तत्व (प्रतिरोधक) को जोड़कर आवश्यक निरंतर धारा का उत्पादन किया जा सकता है, लेकिन इसके लिए उच्च आपूर्ति वोल्टेज की आवश्यकता होगी। इसीलिए, अधिक परिष्कृत डिजाइनों में, उच्च अंतर (गतिशील) प्रतिरोध वाले एक तत्व को लॉन्ग टेल (चित्रा 3) के लिए प्रतिस्थापित किया जाता है, जो एक निरंतर वर्तमान स्रोत/सिंक का अनुमान लगाता है। यह आमतौर पर अपने उच्च अनुपालन वोल्टेज (निर्गत ट्रांजिस्टर में छोटे वोल्टेज ड्रॉप) के कारण धारा प्रतिबिंब द्वारा कार्यान्वित किया जाता है।

कलेक्टर धारा प्रतिबिंब

कलेक्टर प्रतिरोधों को एक धारा प्रतिबिंब द्वारा प्रतिस्थापित किया जा सकता है, जिसका निर्गत भाग एक सक्रिय भार (चित्र। 3) के रूप में कार्य करता है। इस प्रकार विभेदी कलेक्टर करंट सिग्नल को आंतरिक 50% नुकसान के बिना सिंगल-एंडेड वोल्टेज सिग्नल में बदल दिया जाता है और लाभ बहुत बढ़ जाता है। यह आगत कलेक्टर करंट को बाईं ओर से दाईं ओर कॉपी करके हासिल किया जाता है, जहां दो आगत सिग्नल के परिमाण जुड़ते हैं। इस उद्देश्य के लिए, धारा प्रतिबिंब का आगत बायें निर्गत से जुड़ा होता है, और धारा प्रतिबिंब का निर्गत विभेदी प्रवर्धक के दायें जुड़ा होता है।

चित्रा 4: ट्रांसमिशन विशेषता

धारा प्रतिबिंब बायें कलेक्टर करंट को कॉपी करता है और इसे बायें ट्रांजिस्टर से गुजरता है जो दायें कलेक्टर पर करंट पैदा करता है। अंतर प्रवर्धक के इस सही निर्गत पर, दो सिग्नल धाराओं (स्थिति और नकारात्मक वर्तमान परिवर्तन) घटाए जाते हैं। इस मामले में (अंतर आगत संकेत), वे बराबर और विपरीत हैं। इस प्रकार, अंतर अलग-अलग सिग्नल धाराओं (ΔI − (−ΔI) = 2ΔI) से दोगुना है, और सिंगल-एंडेड रूपांतरण का अंतर लाभ हानि के बिना पूरा किया जाता है। चित्र 4 इस सर्किट की संचरण विशेषता को दर्शाता है।

इंटरफेसिंग विचार

फ्लोटिंग आगत स्रोत

दो आधारों के बीच एक अस्थायी स्रोत को जोड़ना संभव है, लेकिन पूर्वाग्रह आधार धाराओं के लिए पथ सुनिश्चित करना आवश्यक है। गैल्वेनिक स्रोत के मामले में, किसी एक आधार और जमीन के बीच केवल एक प्रतिरोधक को जोड़ना पड़ता है। बायसिंग करंट सीधे इस आधार में प्रवेश करेगा और परोक्ष रूप से (आगत स्रोत के माध्यम से) दूसरे में। यदि स्रोत कैपेसिटिव है, तो आधार धाराओं के लिए अलग-अलग पथ सुनिश्चित करने के लिए दो प्रतिरोधों को दो आधारों और जमीन के बीच जोड़ा जाना चाहिए।

आगत/निर्गत प्रतिबाधा

अंतर जोड़ी का आगत प्रतिबाधा आगत विधा पर अत्यधिक निर्भर करता है। सामान्य विधा में, दो भाग उच्च उत्सर्जक भार के साथ सामान्य-कलेक्टर चरणों के रूप में व्यवहार करते हैं, इसलिए आगत प्रतिबाधाएं बहुत अधिक हैं। विभेदी विधा पर, वे ग्राउंडेड एमिटर के साथ कॉमन-एमिटर स्टेज के रूप में व्यवहार करते हैं, इसलिए आगत प्रतिबाधा कम है।

विभेदी जोड़ी की निर्गत प्रतिबाधा अधिक होती है (विशेषकर धारा प्रतिबिंब के साथ बेहतर विभेदी जोड़ी के लिए जैसा कि चित्रा 3 में दिखाया गया है)।

आगत/निर्गत सीमा

सामान्य-विधा आगत वोल्टेज दो आपूर्ति रेलों के बीच भिन्न हो सकता है लेकिन उन तक नहीं पहुंच सकता क्योंकि कुछ वोल्टेज ड्रॉप (न्यूनतम 1 वोल्ट) को दो धारा प्रतिबिंब के निर्गत ट्रांजिस्टर में रहना पड़ता है।

विभेदी प्रवर्धक के रूप में परिचालन प्रवर्धक

चित्र 5 ऑप-एम्प अंतर प्रवर्धक

एक परिचालन प्रवर्धक या ऑप-एम्प, एक अंतर प्रवर्धक है जिसमें बहुत अधिक अंतर-मोड लाभ, बहुत अधिक आगत प्रतिबाधा और कम निर्गत प्रतिबाधा है। एक ऑप-एम्प अंतर प्रवर्धक को नकारात्मक प्रतिक्रिया (चित्रा 5) लागू करके अनुमानित और स्थिर लाभ के साथ बनाया जा सकता है।[nb 5] कुछ प्रकार के अंतर प्रवर्धक में आमतौर पर कई सरल अंतर प्रवर्धक शामिल होते हैं। उदाहरण के लिए एक पूरी तरह से अंतर प्रवर्धक , एक उपकरण प्रवर्धक या एक अलगाव प्रवर्धक अक्सर कई ऑप-एम्प्स के संयोजन से बनाया जाता है।

अनुप्रयोग

विभेदी प्रवर्धक कई सर्किट में पाए जाते हैं जो श्रृंखला नकारात्मक प्रतिक्रिया (ऑप-एम्प अनुयायी, गैर-इनवर्टिंग प्रवर्धक आदि) का उपयोग करते हैं, जहां एक आगत सिग्नल के लिए उपयोग किया जाता है, दूसरा प्रतिक्रिया सिग्नल के लिए (आमतौर पर परिचालन प्रवर्धको द्वारा कार्यान्वित) तुलना के लिए, 1940 के दशक की शुरुआत से पुराने जमाने के इनवर्टिंग सिंगल-एंडेड ऑप-एम्प्स अतिरिक्त रेसिस्टर नेटवर्क (एक ऑप-एम्प इनवर्टिंग प्रवर्धक सबसे लोकप्रिय उदाहरण है) को जोड़कर केवल समानांतर नकारात्मक प्रतिक्रिया का एहसास कर सकते हैं। एक सामान्य अनुप्रयोग विद्युत मोटर्स या सर्वोमैकेनिज्म के नियंत्रण के साथ-साथ संकेत प्रवर्धक अनुप्रयोगों के लिए भी है। असतत इलेक्ट्रानिक्स में, विभेदी प्रवर्धक को लागू करने के लिए एक सामान्य व्यवस्था लंबी पूंछ वाली जोड़ी है, जिसे आमतौर पर अधिकांश ऑप-एम्प एकीकृत सर्किट में अंतर तत्व के रूप में भी पाया जाता है| लॉन्ग-टेल्ड पेयर है, जिसे आमतौर पर अधिकांश ऑप-एम्प इंटीग्रेटेड सर्किट में प्रवर्धक एलिमेंट के रूप में भी पाया जाता है। एक लंबी-पूंछ वाली जोड़ी को एक आगत के रूप में अंतर वोल्टेज के साथ एक एनालॉग गुणक के रूप में और दूसरे के रूप में बायसिंग करंट के रूप में इस्तेमाल किया जा सकता है।

एक विभेदी प्रवर्धक का उपयोग आगत स्टेज एमिटर युग्मित तर्क गेट्स और स्विच के रूप में किया जाता है। जब स्विच के रूप में उपयोग किया जाता है, तो बाएं आधार/ग्रिड का उपयोग सिग्नल आगत के रूप में किया जाता है और दायां आधार/ग्रिड को ग्राउंड किया जाता है, निर्गत दाएं कलेक्टर/प्लेट से लिया जाता है। जब आगत शून्य या नकारात्मक होता है, तो निर्गत शून्य के करीब होता है (लेकिन संतृप्त नहीं किया जा सकता); जब आगत सकारात्मक होता है, तो निर्गत सबसे सकारात्मक होता है, गतिशील संचालन ऊपर वर्णित प्रवर्धक उपयोग के समान होता है।

सममित प्रतिक्रिया नेटवर्क सामान्य-विधा लाभ और सामान्य-विधा पूर्वाग्रह को समाप्त करता है

चित्रा 6: गैर-आदर्श ऑप-एम्प के साथ विभेदक प्रवर्धक: आगत पूर्वाग्रह वर्तमान और अंतर आगत प्रतिबाधा

यदि परिचालन प्रवर्धक (गैर-आदर्श) आगत बायस करंट या विभेदी आगत प्रतिबाधा एक महत्वपूर्ण प्रभाव है, तो कोई एक प्रतिक्रिया नेटवर्क का चयन कर सकता है जो सामान्य-विधा आगत सिग्नल और बायस के प्रभाव को बेहतर बनाता है। चित्र में, वर्तमान जनरेटर प्रत्येक टर्मिनल पर आगत बायस करंट को मॉडल करते हैं; I+b और I-b टर्मिनलों पर आगत बायस करंट का प्रतिनिधित्व करते हैं V+ और V- क्रमशः।

थेवेनिन कि प्रमेय को चलाने वाले नेटवर्क के समतुल्य V+ टर्मिनल में वोल्टेज V+' और प्रतिबाधा R+':

जबकि V . को चलाने वाले नेटवर्क के लिए- टर्मिनल:

ऑप-एम्प का निर्गत सिर्फ ओपन-लूप गेन है Aol विभेदी आगत करंट का गुणा I विभेदी आगत इम्पीडेंस 2Rd, इसलिए

जहां आर|| R . का औसत है+|| और आर-||.

ये समीकरण एक महान सरलीकरण से गुजरते हैं यदि

संबंध में जिसके परिणामस्वरूप

जिसका अर्थ है कि अंतर संकेत के लिए बंद-लूप लाभ V+in- V-in, लेकिन सामान्य-विधा लाभ समान रूप से शून्य है।

इसका यह भी अर्थ है कि सामान्य-मोड आगत पूर्वाग्रह धारा को रद्द कर दिया गया है, केवल आगत ऑफसेट धारा IΔb = I+b − I−b,और Ri के गुणांक के साथ अभी भी मौजूद है, यह ऐसा है जैसे आगत ऑफ़सेट करंट एक आगत ऑफ़सेट वोल्टेज के बराबर है जो एक आगत प्रतिरोध Ri में अभिनय करता है, जो आगत टर्मिनलों में प्रतिक्रिया नेटवर्क का स्रोत प्रतिरोध है।

अंत में, जब तक ओपन-लूप वोल्टेज लाभ Aol इकाई से बहुत बड़ा है, बंद-लूप वोल्टेज लाभ Rf/Ri, वर्चुअल ग्राउंड के रूप में ज्ञात नियम-अंगूठे विश्लेषण के माध्यम से प्राप्त होगा ।[nb 6]

फुटनोट

  1. Details of the long-tailed pair circuitry used in early computing can be found in Alan Turing’s Automatic Computing Engine (Oxford University Press, 2005, ISBN 0-19-856593-3) in Part IV, "ELECTRONICS".
  2. Long-tail is a figurative name of high resistance that represents the high emitter resistance at common mode with a common long tail with a proportional length (at differential mode this tail shortens up to zero). If additional emitter resistors with small resistances are included between the emitters and the common node (to introduce a small negative feedback at differential mode), they can be figuratively represented by short tails.
  3. More generally, this arrangement can be considered as two interacting voltage followers with negative feedback: the output part of the differential pair acts as a voltage follower with constant input voltage (a voltage stabilizer) producing constant output voltage; the input part acts as a voltage follower with varying input voltage trying to change the steady output voltage of the stabilizer. The stabilizer reacts to this intervention by changing its output quantity (current, respectively voltage) that serves as a circuit output.
  4. Interestingly, it is as though the negative feedback has reversed the transistor behavior - the collector current has become an input quantity while the base current serves as an output one.
  5. In this arrangement it seems strange that a high-gain differential amplifier (op-amp) is used as a component of a low-gain differential amplifier, in the way that a high-gain inverting amplifier (op-amp) serves as a component in a low-gain inverting amplifier. This paradox of negative-feedback amplifiers impeded Harold Black obtaining his patent.
  6. क्लोज्ड-लूप कॉमन-मोड गेन के शून्य होने के लिए केवल यह आवश्यक है कि प्रतिरोधों का अनुपात Rf / आरi इनवर्टिंग और नॉन-इनवर्टिंग पैरों में मिलान किया जाना चाहिए। इनपुट पूर्वाग्रह धाराओं को रद्द करने के लिए, यहां दिए गए सख्त संबंध को प्राप्त करना होगा।


यह भी देखें

  • गिल्बर्ट सेल
  • यंत्रीकरण प्रवर्धक
  • परिचालन विभेदी प्रवर्धक
  • एमिटर-युग्मित तर्क

संदर्भ

  1. Laplante, Philip A. (2005). Comprehensive Dictionary of Electrical Engineering (2nd ed.). CRC Press. p. 190. ISBN 978-1420037807.
  2. Eglin, J. M. (1 May 1929). "A Direct-Current Amplifier for Measuring Small Currents". Journal of the Optical Society of America. 18 (5): 393–402. doi:10.1364/JOSA.18.000393.
  3. Matthews, Bryan H. C. (1 December 1934). "PROCEEDINGS OF THE PHYSIOLOGICAL SOCIETY". The Journal of Physiology. 81 (suppl): 28–29. doi:10.1113/jphysiol.1934.sp003151.
  4. "US Patent 2185367" (PDF). Freepatensonline.com. Retrieved 15 February 2016.
  5. Offner, Franklin (1937). "Push-Pull Resistance Coupled Amplifiers". Review of Scientific Instruments. 8 (1): 20–21. doi:10.1063/1.1752180.
  6. Schmitt, Otto H. (1941). "Cathode Phase Inversion" (PDF). Review of Scientific Instruments. 12 (11): 548–551. doi:10.1063/1.1769796. Retrieved 15 February 2016.
  7. "US Patent 2147940" (PDF). Google Inc. Retrieved 16 February 2016.
  8. Geddes, L. A. Who Invented the Differential Amplifier?. IEEE Engineering in Medicine and Biology, May/June 1996, p. 116–117.


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • एकीकृत परिपथ
  • अवरोध
  • आम एमिटर
  • आभासी मैदान
  • सतत प्रवाह
  • यंत्रीकरण प्रवर्धक
  • नकारात्मक प्रतिपुष्टि

बाहरी संबंध