बिहोलोमोर्फिज्म: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (6 revisions imported from alpha:बिहोलोमोर्फिज्म) |
(No difference)
|
Revision as of 09:04, 15 July 2023
एक या अधिक जटिल चर के कार्यों के गणितीय सिद्धांत में, और जटिल बीजगणितीय ज्यामिति में भी, बिहोलोमोर्फिज्म या होलोमोर्फिक फलन विशेषण ऐसा होलोमोर्फिक फलन है जिसका व्युत्क्रम भी होलोमोर्फिक है।
औपचारिक परिभाषा
औपचारिक रूप से, बायोलोमोर्फिक फलन वह फलन है के संवृत उपसमुच्चय U पर परिभाषित किया गया है -आयामी जटिल स्थान Cn में मानों के साथ 'C'n जो होलोमोर्फिक फलन और विशेषण फलन है। जैसे कि इसकी छवि (गणित) संवृत समुच्चय है Cn में और व्युत्क्रम भी होलोमोर्फिक है। अधिक सामान्यतः, U और V कई गुना जटिल हो सकते हैं। जैसा कि एकल जटिल चर के कार्यों की स्तिथि में, होलोमोर्फिक मानचित्र के लिए उसकी छवि पर बिहोलोमोर्फिक होने के लिए पर्याप्त नियम यह है कि मानचित्र इंजेक्टिव है, जिस स्थिति में व्युत्क्रम भी होलोमोर्फिक है (उदाहरण के लिए, गनिंग 1990, प्रमेय I देखें)। 11)।
यदि कोई बिहोलोमोर्फिज्म उपस्थित है तो , से V तक, हम कहते हैं कि U और V बिहोलोमोर्फिक रूप से समतुल्य हैं या कि वे बिहोलोमोर्फिक हैं।
रीमैन मानचित्रण प्रमेय और सामान्यीकरण
यदि संपूर्ण जटिल तल के अतिरिक्त प्रत्येक सरल रूप से जुड़ा हुआ संवृत समुच्चय यूनिट डिस्क के लिए बायोलोमोर्फिक है (यह रीमैन मानचित्रण प्रमेय है)। उच्च आयामों में स्थिति अधिक भिन्न है। उदाहरण के लिए, ओपन यूनिट बॉल और ओपन यूनिट पॉलीडिस्क बायोहोलोमोर्फिक रूप से समकक्ष नहीं हैं वास्तव में, एक से दूसरे में कोई उचित होलोमोर्फिक फलन भी उपस्थित नहीं है।
वैकल्पिक परिभाषाएँ
मानचित्रों की स्तिथि में f: U → C को जटिल विमान 'C' के संवृत उपसमुच्चय U पर परिभाषित किया गया है, कुछ लेखक (उदाहरण के लिए, फ्रीटैग 2009, परिभाषा IV.4.1) अनुरूप मानचित्र को अशून्य व्युत्पन्न अर्थात f के साथ मानचित्र के रूप में परिभाषित करते हैं। (z)≠ 0, U में प्रत्येक z के लिए इस परिभाषा के अनुसार, मानचित्र f: U → 'C' के अनुरूप है यदि केवल f: U → f(U) बिहोलोमोर्फिक है। ध्यान दें कि बिहोलोमोर्फिज्म की परिभाषा के अनुसार, उनके व्युत्पन्न के बारे में कुछ भी नहीं माना जाता है, इसलिए, इस तुल्यता में यह आशय सम्मिलित है कि होमियोमोर्फिज्म जो जटिल विभेदीकरण योग्य है, वास्तव में प्रत्येक स्थान में अशून्य व्युत्पन्न होना चाहिए। अन्य लेखक (उदाहरण के लिए, कॉनवे 1978) अनुरूप मानचित्र को अशून्य व्युत्पन्न वाले मानचित्र के रूप में परिभाषित करते हैं, किंतु यह आवश्यक किए बिना कि मानचित्र इंजेक्टिव हो। इस परिभाषा के अनुसार, अनुरूप मानचित्र को बिहोलोमोर्फिक होने की आवश्यकता नहीं है, भले ही यह स्थानीय रूप से बिहोलोमोर्फिक हो, उदाहरण के लिए, व्युत्क्रम फलन प्रमेय द्वारा यदि f: U → U को U = 'C'–{0} f(z) = z2 द्वारा परिभाषित किया गया है, तो f, U के अनुरूप है, क्योंकि इसका व्युत्पन्न f'(z) = 2z ≠ 0 है, किंतु यह बायोलोमोर्फिक नहीं है, क्योंकि यह 2-1 है।
संदर्भ
- Conway, John B. (1978). Functions of One Complex Variable. Springer-Verlag. ISBN 3-540-90328-3.
- D'Angelo, John P. (1993). Several Complex Variables and the Geometry of Real Hypersurfaces. CRC Press. ISBN 0-8493-8272-6.
- Freitag, Eberhard; Busam, Rolf (2009). Complex Analysis. Springer-Verlag. ISBN 978-3-540-93982-5.
- Gunning, Robert C. (1990). Introduction to Holomorphic Functions of Several Variables, Vol. II. Wadsworth. ISBN 0-534-13309-6.
- Krantz, Steven G. (2002). Function Theory of Several Complex Variables. American Mathematical Society. ISBN 0-8218-2724-3.
This article incorporates material from biholomorphically equivalent on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.