जनक समुच्चय का समूह: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Use American English|date = January 2019}}
{{Use American English|date = January 2019}}
{{Short description|Abstract algebra concept}}
{{Short description|Abstract algebra concept}}
[[File:One5Root.svg|thumb|सम्मिश्र तल में एकता की 5वीं जड़ें गुणन के अंतर्गत एक [[समूह (गणित)|समूह]] बनाती हैं। प्रत्येक गैर-पहचान तत्व समूह उत्पन्न करता है।]][[अमूर्त बीजगणित]] में, '''किसी समूह एक उत्पादक सेट''' समूह सेट का एक उपसमुच्चय होता है, जैसे कि समूह के प्रत्येक तत्व को उपसमुच्चय के कई तत्वों और उनके व्युत्क्रमों के संयोजन (समूह संचालन के तहत) के रूप में व्यक्त किया जा सकता है।
[[File:One5Root.svg|thumb|सम्मिश्र तल में एकता की 5वीं जड़ें गुणन के अंतर्गत एक [[समूह (गणित)|समूह]] बनाती हैं। प्रत्येक गैर-पहचान तत्व समूह उत्पन्न करता है।]][[अमूर्त बीजगणित]] में, '''जनक समुच्चय का समूह''' समूह समुच्चय का एक उपसमुच्चय होता है, जैसे कि समूह के प्रत्येक तत्व को उपसमुच्चय के कई तत्वों और उनके व्युत्क्रमों के संयोजन (समूह संचालन के तहत) के रूप में व्यक्त किया जा सकता है।


दूसरे शब्दों में, यदि <math>S</math> समूह <math>G</math> का एक उपसमूह है, तो <math>\langle S\rangle</math>, <math>S</math> ''द्वारा उत्पन्न  [[उपसमूह]]'', <math>G</math> का सबसे छोटा उपसमूह है, <math>S</math> का सबसे छोटा उपसमूह है, जो <math>S</math> के तत्वों वाले सभी उपसमूहों के प्रतिच्छेदन के बराबर है; समान रूप से, <math>\langle S\rangle</math> <math>G</math> के सभी तत्वों का उपसमूह है जिसे <math>S</math> में तत्वों और व्युत्क्रमों के परिमित उत्पाद के रूप में व्यक्त किया जा सकता है। (ध्यान दें कि व्युत्क्रम की आवश्यकता केवल तभी होती है जब समूह अनंत हो; एक सीमित समूह में, किसी तत्व के व्युत्क्रम को उस तत्व की घात के रूप में व्यक्त किया जा सकता है।)
दूसरे शब्दों में, यदि <math>S</math> समूह <math>G</math> का एक उपसमूह है, तो <math>\langle S\rangle</math>, <math>S</math> ''द्वारा उत्पन्न  [[उपसमूह]]'', <math>G</math> का सबसे छोटा उपसमूह है, <math>S</math> का सबसे छोटा उपसमूह है, जो <math>S</math> के तत्वों वाले सभी उपसमूहों के प्रतिच्छेदन के बराबर है; समान रूप से, <math>\langle S\rangle</math> <math>G</math> के सभी तत्वों का उपसमूह है जिसे <math>S</math> में तत्वों और व्युत्क्रमों के परिमित उत्पाद के रूप में व्यक्त किया जा सकता है। (ध्यान दें कि व्युत्क्रम की आवश्यकता केवल तभी होती है जब समूह अनंत हो; एक सीमित समूह में, किसी तत्व के व्युत्क्रम को उस तत्व की घात के रूप में व्यक्त किया जा सकता है।)


यदि <math>G=\langle S\rangle</math>, तो हम ऐसा कहते हैं <math>S</math>, <math>G</math>उत्पन्न करता है, और <math>S</math> के तत्वों को जनरेटर या समूह जनरेटर कहा जाता है। यदि <math>S</math> तो, खाली सेट है, तो <math>\langle S\rangle</math> [[तुच्छ समूह|नगण्य समूह]] <math>\{e\}</math> है, क्योंकि हम खाली उत्पाद को पहचान मानते हैं।
यदि <math>G=\langle S\rangle</math>, तो हम ऐसा कहते हैं <math>S</math>, <math>G</math>उत्पन्न करता है, और <math>S</math> के तत्वों को जनरेटर या समूह जनरेटर कहा जाता है। यदि <math>S</math> तो, खाली समुच्चय है, तो <math>\langle S\rangle</math> [[तुच्छ समूह|नगण्य समूह]] <math>\{e\}</math> है, क्योंकि हम खाली उत्पाद को पहचान मानते हैं।


जब <math>S</math> में केवल एक तत्व <math>x</math> होता है, तो <math>\langle S\rangle</math> को प्रायः <math>\langle x\rangle</math> के रूप में लिखा जाता है। इस मामले में, <math>\langle x\rangle</math> एक चक्रीय समूह, <math>x</math>, की घातों का [[चक्रीय समूह|''चक्रीय उपसमूह'']] है, और हम कहते हैं कि यह समूह <math>x</math> किसके द्वारा उत्पन्न होता है। यह कहने के बराबर है कि एक तत्व <math>x</math> एक समूह उत्पन्न करता है, यह कह रहा है कि यह संपूर्ण समूह <math>G</math> के बराबर है। [[परिमित समूह|परिमित समूहों]] के लिए, यह भी ऐसा कहने के बराबर है कि <math>\langle x\rangle</math> का क्रम <math>|G|</math> है।  
जब <math>S</math> में केवल एक तत्व <math>x</math> होता है, तो <math>\langle S\rangle</math> को प्रायः <math>\langle x\rangle</math> के रूप में लिखा जाता है। इस मामले में, <math>\langle x\rangle</math> एक चक्रीय समूह, <math>x</math>, की घातों का [[चक्रीय समूह|''चक्रीय उपसमूह'']] है, और हम कहते हैं कि यह समूह <math>x</math> किसके द्वारा उत्पन्न होता है। यह कहने के बराबर है कि एक तत्व <math>x</math> एक समूह उत्पन्न करता है, यह कह रहा है कि यह संपूर्ण समूह <math>G</math> के बराबर है। [[परिमित समूह|परिमित समूहों]] के लिए, यह भी ऐसा कहने के बराबर है कि <math>\langle x\rangle</math> का क्रम <math>|G|</math> है।  


एक समूह को अनंत संख्या में जनरेटर की आवश्यकता हो सकती है। उदाहरण के लिए परिमेय संख्याओं <math>\Q</math> का योगात्मक समूह परिमित रूप से उत्पन्न नहीं होता है। यह सभी पूर्णांकों के व्युत्क्रमों द्वारा उत्पन्न होता है, लेकिन इन जनरेटरों की किसी भी सीमित संख्या को जनरेटिंग सेट से हटाए बिना जनरेटिंग सेट से हटाया जा सकता है। इस तरह के मामले में, जनरेटिंग सेट के सभी तत्व फिर भी "गैर-जेनरेटिंग तत्व" हैं, जैसा कि वास्तव में पूरे समूह के सभी तत्व हैं - नीचे [[फ्रैटिनी उपसमूह]] देखें।
एक समूह को अनंत संख्या में जनरेटर की आवश्यकता हो सकती है। उदाहरण के लिए परिमेय संख्याओं <math>\Q</math> का योगात्मक समूह परिमित रूप से उत्पन्न नहीं होता है। यह सभी पूर्णांकों के व्युत्क्रमों द्वारा उत्पन्न होता है, लेकिन इन जनरेटरों की किसी भी सीमित संख्या को जनरेटिंग समुच्चय से हटाए बिना जनरेटिंग समुच्चय से हटाया जा सकता है। इस तरह के मामले में, जनरेटिंग समुच्चय के सभी तत्व फिर भी "गैर-जेनरेटिंग तत्व" हैं, जैसा कि वास्तव में पूरे समूह के सभी तत्व हैं - नीचे [[फ्रैटिनी उपसमूह]] देखें।


यदि <math>G</math> एक [[टोपोलॉजिकल समूह]] है तो <math>G</math> के उपसमुच्चय <math>S</math> को ''टोपोलॉजिकल जनरेटर'' का एक सेट कहा जाता है यदि <math>\langle S\rangle</math> <math>G</math> में [[सघन सेट]] है,अर्थात <math>\langle S\rangle</math>का [[समापन (टोपोलॉजी)|समापन]] संपूर्ण समूह <math>G</math> है।
यदि <math>G</math> एक [[टोपोलॉजिकल समूह]] है तो <math>G</math> के उपसमुच्चय <math>S</math> को ''टोपोलॉजिकल जनरेटर'' का एक समुच्चय कहा जाता है यदि <math>\langle S\rangle</math> <math>G</math> में [[सघन सेट|सघन समुच्चय]] है,अर्थात <math>\langle S\rangle</math>का [[समापन (टोपोलॉजी)|समापन]] संपूर्ण समूह <math>G</math> है।


==अंततः उत्पन्न समूह==
==अंततः उत्पन्न समूह==
Line 22: Line 22:
एक ही समूह के विभिन्न उपसमुच्चय, उपसमुच्चय उत्पन्न कर सकते हैं। उदाहरण के लिए, यदि <math>p</math> और <math>q</math> {{math|1=[[greatest common divisor|gcd]](''p'',&nbsp;''q'')&nbsp;=&nbsp;1}} के साथ पूर्णांक हैं, तो <math>\{p,q\}</math> बेज़आउट की पहचान द्वारा जोड़ के तहत पूर्णांकों का समूह भी उत्पन्न करता है।
एक ही समूह के विभिन्न उपसमुच्चय, उपसमुच्चय उत्पन्न कर सकते हैं। उदाहरण के लिए, यदि <math>p</math> और <math>q</math> {{math|1=[[greatest common divisor|gcd]](''p'',&nbsp;''q'')&nbsp;=&nbsp;1}} के साथ पूर्णांक हैं, तो <math>\{p,q\}</math> बेज़आउट की पहचान द्वारा जोड़ के तहत पूर्णांकों का समूह भी उत्पन्न करता है।


हालांकि यह सच है कि एक परिमित रूप से उत्पन्न समूह का प्रत्येक [[भागफल समूह|भागफल]] परिमित रूप से उत्पन्न होता है (भागफल में जनरेटर की छवियां एक परिमित उत्पन्न करने वाला सेट देती हैं), एक परिमित रूप से उत्पन्न समूह के एक उपसमूह को परिमित रूप से उत्पन्न करने की आवश्यकता नहीं होती है। उदाहरण के लिए, मान लीजिए कि <math>G</math> दो जनरेटरों,  <math>x</math> और <math>y</math> में [[मुक्त समूह]] है, (जो स्पष्ट रूप से सीमित रूप से उत्पन्न होता है, क्योंकि <math>G=\langle \{x,y\}\rangle</math>), और मान लीजिए कि <math>S</math> किसी [[प्राकृतिक संख्या]] <math>n</math> के लिए <math>y^nxy^{-n}</math>रूप के <math>G</math> के सभी तत्वों से युक्त उपसमुच्चय है। <math>\langle S\rangle</math> अनगिनत जनरेटरों में मुक्त समूह के लिए समरूपी है, और इसलिए इसे अंतिम रूप से उत्पन्न नहीं किया जा सकता है। हालाँकि, एक सीमित रूप से उत्पन्न [[एबेलियन समूह]] का प्रत्येक उपसमूह अपने आप में एक सीमित रूप से उत्पन्न होता है। वास्तव में, और अधिक कहा जा सकता है: सभी अंतिम रूप से उत्पन्न समूहों का वर्ग [[समूह विस्तार|एक्सटेंशन]] के तहत बंद है। इसे देखने के लिए, (अंततः उत्पन्न) [[सामान्य उपसमूह]] और भागफल के लिए एक जनरेटिंग सेट लें। फिर सामान्य उपसमूह के लिए जेनरेटर, भागफल के लिए जेनरेटर की पूर्वछवियों के साथ मिलकर, समूह उत्पन्न करते हैं।
हालांकि यह सच है कि एक परिमित रूप से उत्पन्न समूह का प्रत्येक [[भागफल समूह|भागफल]] परिमित रूप से उत्पन्न होता है (भागफल में जनरेटर की छवियां एक परिमित उत्पन्न करने वाला समुच्चय देती हैं), एक परिमित रूप से उत्पन्न समूह के एक उपसमूह को परिमित रूप से उत्पन्न करने की आवश्यकता नहीं होती है। उदाहरण के लिए, मान लीजिए कि <math>G</math> दो जनरेटरों,  <math>x</math> और <math>y</math> में [[मुक्त समूह]] है, (जो स्पष्ट रूप से सीमित रूप से उत्पन्न होता है, क्योंकि <math>G=\langle \{x,y\}\rangle</math>), और मान लीजिए कि <math>S</math> किसी [[प्राकृतिक संख्या]] <math>n</math> के लिए <math>y^nxy^{-n}</math>रूप के <math>G</math> के सभी तत्वों से युक्त उपसमुच्चय है। <math>\langle S\rangle</math> अनगिनत जनरेटरों में मुक्त समूह के लिए समरूपी है, और इसलिए इसे अंतिम रूप से उत्पन्न नहीं किया जा सकता है। हालाँकि, एक सीमित रूप से उत्पन्न [[एबेलियन समूह]] का प्रत्येक उपसमूह अपने आप में एक सीमित रूप से उत्पन्न होता है। वास्तव में, और अधिक कहा जा सकता है: सभी अंतिम रूप से उत्पन्न समूहों का वर्ग [[समूह विस्तार|एक्सटेंशन]] के तहत बंद है। इसे देखने के लिए, (अंततः उत्पन्न) [[सामान्य उपसमूह]] और भागफल के लिए एक जनरेटिंग समुच्चय लें। फिर सामान्य उपसमूह के लिए जेनरेटर, भागफल के लिए जेनरेटर की पूर्वछवियों के साथ मिलकर, समूह उत्पन्न करते हैं।


==उदाहरण==
==उदाहरण==
Line 34: Line 34:
:(1 3 2) = (1 2)(1 2 3)(1 2)
:(1 3 2) = (1 2)(1 2 3)(1 2)


*अनंत समूहों में परिमित जनरेटिंग सेट भी हो सकते हैं। पूर्णांकों के योगात्मक समूह में जनरेटिंग सेट के रूप में 1 होता है। तत्व 2 एक जनरेटिंग सेट नहीं है, क्योंकि विषम संख्याएँ गायब होंगी। दो-तत्व उपसमुच्चय {{math|1={{mset|3,&nbsp;5}}}} एक जनक समुच्चय है, क्योंकि {{math|1=(&minus;5)&nbsp;+&nbsp;3&nbsp;+&nbsp;3&nbsp;=&nbsp;1}} (वास्तव में, सहअभाज्य पूर्णांक संख्याओं का कोई भी जोड़ा, बेज़आउट की पहचान के परिणामस्वरूप होता है)।
*अनंत समूहों में परिमित जनरेटिंग समुच्चय भी हो सकते हैं। पूर्णांकों के योगात्मक समूह में जनरेटिंग समुच्चय के रूप में 1 होता है। तत्व 2 एक जनरेटिंग समुच्चय नहीं है, क्योंकि विषम संख्याएँ गायब होंगी। दो-तत्व उपसमुच्चय {{math|1={{mset|3,&nbsp;5}}}} एक जनक समुच्चय है, क्योंकि {{math|1=(&minus;5)&nbsp;+&nbsp;3&nbsp;+&nbsp;3&nbsp;=&nbsp;1}} (वास्तव में, सहअभाज्य पूर्णांक संख्याओं का कोई भी जोड़ा, बेज़आउट की पहचान के परिणामस्वरूप होता है)।


* एन-गॉन (जिसका क्रम {{math|1=2n}} है) का [[डायहेड्रल समूह]] सेट {{math|1={{mset|{{var|r}}, {{var|s}}}}}} द्वारा उत्पन्न होता है, जहां {{mvar|r}}  {{math|1=2''π''/{{var|n}}}} द्वारा घूर्णन का प्रतिनिधित्व करता है और {{mvar|s}} समरूपता की रेखा पर कोई प्रतिबिंब है।<ref>{{Cite book|title=सार बीजगणित|last=Dummit |first=David S.|date=2004|publisher=Wiley|last2=Foote |first2=Richard M. |isbn=9780471452348|edition=3rd |oclc=248917264|page=25}}</ref>
* एन-गॉन (जिसका क्रम {{math|1=2n}} है) का [[डायहेड्रल समूह]] समुच्चय {{math|1={{mset|{{var|r}}, {{var|s}}}}}} द्वारा उत्पन्न होता है, जहां {{mvar|r}}  {{math|1=2''π''/{{var|n}}}} द्वारा घूर्णन का प्रतिनिधित्व करता है और {{mvar|s}} समरूपता की रेखा पर कोई प्रतिबिंब है।<ref>{{Cite book|title=सार बीजगणित|last=Dummit |first=David S.|date=2004|publisher=Wiley|last2=Foote |first2=Richard M. |isbn=9780471452348|edition=3rd |oclc=248917264|page=25}}</ref>
* क्रम <math>n</math>, <math>\mathbb{Z}/n\mathbb{Z}</math> के चक्रीय समूह और एकता की <math>n</math><sup>वें</sup> जड़ें सभी एक ही तत्व द्वारा उत्पन्न होती हैं (वास्तव में, ये समूह एक दूसरे के लिए आइसोमोर्फिक हैं)।<ref>{{harvnb|Dummit|Foote|2004|p=54}}</ref>
* क्रम <math>n</math>, <math>\mathbb{Z}/n\mathbb{Z}</math> के चक्रीय समूह और एकता की <math>n</math><sup>वें</sup> जड़ें सभी एक ही तत्व द्वारा उत्पन्न होती हैं (वास्तव में, ये समूह एक दूसरे के लिए आइसोमोर्फिक हैं)।<ref>{{harvnb|Dummit|Foote|2004|p=54}}</ref>
* किसी समूह की प्रस्तुति को जेनरेटर के एक सेट और उनके बीच संबंधों के संग्रह के रूप में परिभाषित किया गया है, इसलिए उस पृष्ठ पर सूचीबद्ध किसी भी उदाहरण में जेनरेटर सेट के उदाहरण सम्मिलित हैं।<ref>{{harvnb|Dummit|Foote|2004|p=26}}</ref>
* किसी समूह की प्रस्तुति को जेनरेटर के एक समुच्चय और उनके बीच संबंधों के संग्रह के रूप में परिभाषित किया गया है, इसलिए उस पृष्ठ पर सूचीबद्ध किसी भी उदाहरण में जेनरेटर समुच्चय के उदाहरण सम्मिलित हैं।<ref>{{harvnb|Dummit|Foote|2004|p=26}}</ref>




Line 44: Line 44:
{{Main|मुक्त समूह}}
{{Main|मुक्त समूह}}


सेट <math>S</math> द्वारा उत्पन्न सबसे सामान्य समूह <math>S</math> द्वारा स्वतंत्र रूप से उत्पन्न समूह है। <math>S</math> द्वारा उत्पन्न प्रत्येक समूह इस समूह के भागफल के लिए [[समरूपी|आइसोमोर्फिक]] है, एक विशेषता जिसका उपयोग समूह की प्रस्तुति की अभिव्यक्ति में किया जाता है।
समुच्चय <math>S</math> द्वारा उत्पन्न सबसे सामान्य समूह <math>S</math> द्वारा स्वतंत्र रूप से उत्पन्न समूह है। <math>S</math> द्वारा उत्पन्न प्रत्येक समूह इस समूह के भागफल के लिए [[समरूपी|आइसोमोर्फिक]] है, एक विशेषता जिसका उपयोग समूह की प्रस्तुति की अभिव्यक्ति में किया जाता है।


==फ्रैटिनी उपसमूह==
==फ्रैटिनी उपसमूह==
एक दिलचस्प साथी विषय गैर-जनरेटर का है। समूह <math>G</math> का एक तत्व <math>x</math> एक गैर-जनरेटर है यदि प्रत्येक सेट <math>S</math> जिसमें <math>x</math> है जो <math>G</math> उत्पन्न करता है, तब भी <math>G</math> उत्पन्न करता है जब <math>x</math> को <math>S</math> से हटा दिया जाता है। जोड़ के साथ पूर्णांक में, एकमात्र गैर-जनरेटर 0 है। सभी गैर-जनरेटर <math>G</math> का एक उपसमूह, फ्रैटिनी उपसमूह बनाते हैं।
एक दिलचस्प साथी विषय गैर-जनरेटर का है। समूह <math>G</math> का एक तत्व <math>x</math> एक गैर-जनरेटर है यदि प्रत्येक समुच्चय <math>S</math> जिसमें <math>x</math> है जो <math>G</math> उत्पन्न करता है, तब भी <math>G</math> उत्पन्न करता है जब <math>x</math> को <math>S</math> से हटा दिया जाता है। जोड़ के साथ पूर्णांक में, एकमात्र गैर-जनरेटर 0 है। सभी गैर-जनरेटर <math>G</math> का एक उपसमूह, फ्रैटिनी उपसमूह बनाते हैं।


==अर्धसमूह और मोनोइड्स==
==अर्धसमूह और मोनोइड्स==
यदि <math>G</math> एक [[अर्धसमूह]] या एक [[मोनोइड]] है, तो भी कोई <math>G</math> के जनरेटिंग सेट <math>S</math> की धारणा का उपयोग कर सकता है। <math>S</math>, <math>G</math> का एक अर्धसमूह/मोनॉइड जनरेटिंग सेट है यदि <math>G</math>, <math>S</math> युक्त सबसे छोटा अर्धसमूह/मोनॉइड है।
यदि <math>G</math> एक [[अर्धसमूह]] या एक [[मोनोइड]] है, तो भी कोई <math>G</math> के जनरेटिंग समुच्चय <math>S</math> की धारणा का उपयोग कर सकता है। <math>S</math>, <math>G</math> का एक अर्धसमूह/मोनॉइड जनरेटिंग समुच्चय है यदि <math>G</math>, <math>S</math> युक्त सबसे छोटा अर्धसमूह/मोनॉइड है।


ऊपर दिए गए परिमित योगों का उपयोग करके किसी समूह के सेट को तैयार करने की परिभाषाओं को थोड़ा संशोधित किया जाना चाहिए जब कोई अर्धसमूह या मोनोइड से निपटता है। वास्तव में, इस परिभाषा में अब व्युत्क्रम संक्रिया की धारणा का उपयोग नहीं किया जाना चाहिए। यदि <math>G</math> का प्रत्येक तत्व <math>S</math> के तत्वों का एक सीमित योग है, तो सेट <math>S</math> को  <math>G</math> का एक अर्धसमूह उत्पन्न करने वाला सेट कहा जाता है। इसी प्रकार, एक सेट <math>S</math> को <math>G</math> का एक मोनोइड जेनरेटिंग सेट कहा जाता है, यदि <math>G</math> का प्रत्येक गैर-शून्य तत्व <math>S</math> के तत्वों का एक सीमित योग है।
ऊपर दिए गए परिमित योगों का उपयोग करके किसी समूह के समुच्चय को तैयार करने की परिभाषाओं को थोड़ा संशोधित किया जाना चाहिए जब कोई अर्धसमूह या मोनोइड से निपटता है। वास्तव में, इस परिभाषा में अब व्युत्क्रम संक्रिया की धारणा का उपयोग नहीं किया जाना चाहिए। यदि <math>G</math> का प्रत्येक तत्व <math>S</math> के तत्वों का एक सीमित योग है, तो समुच्चय <math>S</math> को  <math>G</math> का एक अर्धसमूह उत्पन्न करने वाला समुच्चय कहा जाता है। इसी प्रकार, एक समुच्चय <math>S</math> को <math>G</math> का एक मोनोइड जेनरेटिंग समुच्चय कहा जाता है, यदि <math>G</math> का प्रत्येक गैर-शून्य तत्व <math>S</math> के तत्वों का एक सीमित योग है।


उदाहरण के लिए, {1} प्राकृतिक संख्याओं <math>\N</math> के सेट का एक मोनॉइड जनरेटर है। समुच्चय {1} सकारात्मक प्राकृतिक संख्याओं <math>\N_{>0}</math> का एक अर्धसमूह जनरेटर भी है। हालाँकि, पूर्णांक 0 को 1s के (गैर-रिक्त) योग के रूप में व्यक्त नहीं किया जा सकता है, इस प्रकार {1} प्राकृतिक संख्याओं का अर्धसमूह जनरेटर नहीं है।
उदाहरण के लिए, {1} प्राकृतिक संख्याओं <math>\N</math> के समुच्चय का एक मोनॉइड जनरेटर है। समुच्चय {1} सकारात्मक प्राकृतिक संख्याओं <math>\N_{>0}</math> का एक अर्धसमूह जनरेटर भी है। हालाँकि, पूर्णांक 0 को 1s के (गैर-रिक्त) योग के रूप में व्यक्त नहीं किया जा सकता है, इस प्रकार {1} प्राकृतिक संख्याओं का अर्धसमूह जनरेटर नहीं है।


इसी प्रकार, जबकि {1} पूर्णांकों <math>\mathbb Z</math> के सेट का एक समूह जनरेटर है, {1} पूर्णांकों के समुच्चय का मोनॉइड जनरेटर नहीं है। दरअसल, पूर्णांक -1 को 1s के सीमित योग के रूप में व्यक्त नहीं किया जा सकता है।
इसी प्रकार, जबकि {1} पूर्णांकों <math>\mathbb Z</math> के समुच्चय का एक समूह जनरेटर है, {1} पूर्णांकों के समुच्चय का मोनॉइड जनरेटर नहीं है। दरअसल, पूर्णांक -1 को 1s के सीमित योग के रूप में व्यक्त नहीं किया जा सकता है।


==यह भी देखें==
==यह भी देखें==
* अन्य संरचनाओं में संबंधित अर्थों के लिए सेट तैयार करना
* अन्य संरचनाओं में संबंधित अर्थों के लिए समुच्चय तैयार करना
* समूह की प्रस्तुति
* समूह की प्रस्तुति
* [[आदिम तत्व (परिमित क्षेत्र)|अभाज्य तत्व (परिमित क्षेत्र)]]
* [[आदिम तत्व (परिमित क्षेत्र)|अभाज्य तत्व (परिमित क्षेत्र)]]

Revision as of 17:10, 12 July 2023

सम्मिश्र तल में एकता की 5वीं जड़ें गुणन के अंतर्गत एक समूह बनाती हैं। प्रत्येक गैर-पहचान तत्व समूह उत्पन्न करता है।

अमूर्त बीजगणित में, जनक समुच्चय का समूह समूह समुच्चय का एक उपसमुच्चय होता है, जैसे कि समूह के प्रत्येक तत्व को उपसमुच्चय के कई तत्वों और उनके व्युत्क्रमों के संयोजन (समूह संचालन के तहत) के रूप में व्यक्त किया जा सकता है।

दूसरे शब्दों में, यदि समूह का एक उपसमूह है, तो , द्वारा उत्पन्न उपसमूह, का सबसे छोटा उपसमूह है, का सबसे छोटा उपसमूह है, जो के तत्वों वाले सभी उपसमूहों के प्रतिच्छेदन के बराबर है; समान रूप से, के सभी तत्वों का उपसमूह है जिसे में तत्वों और व्युत्क्रमों के परिमित उत्पाद के रूप में व्यक्त किया जा सकता है। (ध्यान दें कि व्युत्क्रम की आवश्यकता केवल तभी होती है जब समूह अनंत हो; एक सीमित समूह में, किसी तत्व के व्युत्क्रम को उस तत्व की घात के रूप में व्यक्त किया जा सकता है।)

यदि , तो हम ऐसा कहते हैं , उत्पन्न करता है, और के तत्वों को जनरेटर या समूह जनरेटर कहा जाता है। यदि तो, खाली समुच्चय है, तो नगण्य समूह है, क्योंकि हम खाली उत्पाद को पहचान मानते हैं।

जब में केवल एक तत्व होता है, तो को प्रायः के रूप में लिखा जाता है। इस मामले में, एक चक्रीय समूह, , की घातों का चक्रीय उपसमूह है, और हम कहते हैं कि यह समूह किसके द्वारा उत्पन्न होता है। यह कहने के बराबर है कि एक तत्व एक समूह उत्पन्न करता है, यह कह रहा है कि यह संपूर्ण समूह के बराबर है। परिमित समूहों के लिए, यह भी ऐसा कहने के बराबर है कि का क्रम है।

एक समूह को अनंत संख्या में जनरेटर की आवश्यकता हो सकती है। उदाहरण के लिए परिमेय संख्याओं का योगात्मक समूह परिमित रूप से उत्पन्न नहीं होता है। यह सभी पूर्णांकों के व्युत्क्रमों द्वारा उत्पन्न होता है, लेकिन इन जनरेटरों की किसी भी सीमित संख्या को जनरेटिंग समुच्चय से हटाए बिना जनरेटिंग समुच्चय से हटाया जा सकता है। इस तरह के मामले में, जनरेटिंग समुच्चय के सभी तत्व फिर भी "गैर-जेनरेटिंग तत्व" हैं, जैसा कि वास्तव में पूरे समूह के सभी तत्व हैं - नीचे फ्रैटिनी उपसमूह देखें।

यदि एक टोपोलॉजिकल समूह है तो के उपसमुच्चय को टोपोलॉजिकल जनरेटर का एक समुच्चय कहा जाता है यदि में सघन समुच्चय है,अर्थात का समापन संपूर्ण समूह है।

अंततः उत्पन्न समूह

यदि परिमित है, तो समूह को परिमित रूप से उत्पन्न कहा जाता है। विशेष रूप से अंतिम रूप से उत्पन्न एबेलियन समूहों की संरचना का आसानी से वर्णन किया गया है। कई प्रमेय जो अंतिम रूप से उत्पन्न समूहों के लिए सत्य हैं, सामान्यतः समूहों के लिए विफल हो जाते हैं। यह सिद्ध हो चुका है कि यदि एक उपसमुच्चय द्वारा एक परिमित समूह उत्पन्न होता है, तो प्रत्येक समूह तत्व को समूह के क्रम से कम या उसके बराबर लंबाई वाले वर्णमाला के एक शब्द के रूप में व्यक्त किया जा सकता है।

प्रत्येक परिमित समूह के बाद से परिमित रूप से उत्पन्न होता है। जोड़ के अंतर्गत पूर्णांक एक अनंत समूह का उदाहरण है जो 1 और -1 दोनों द्वारा परिमित रूप से उत्पन्न होता है, लेकिन योग के तहत परिमेय संख्या का समूह परिमित रूप से उत्पन्न नहीं किया जा सकता है। कोई भी असंख्य समूह परिमित रूप से उत्पन्न नहीं किया जा सकता। उदाहरण के लिए, जोड़ के अंतर्गत वास्तविक संख्याओं का समूह, है।

एक ही समूह के विभिन्न उपसमुच्चय, उपसमुच्चय उत्पन्न कर सकते हैं। उदाहरण के लिए, यदि और gcd(pq) = 1 के साथ पूर्णांक हैं, तो बेज़आउट की पहचान द्वारा जोड़ के तहत पूर्णांकों का समूह भी उत्पन्न करता है।

हालांकि यह सच है कि एक परिमित रूप से उत्पन्न समूह का प्रत्येक भागफल परिमित रूप से उत्पन्न होता है (भागफल में जनरेटर की छवियां एक परिमित उत्पन्न करने वाला समुच्चय देती हैं), एक परिमित रूप से उत्पन्न समूह के एक उपसमूह को परिमित रूप से उत्पन्न करने की आवश्यकता नहीं होती है। उदाहरण के लिए, मान लीजिए कि दो जनरेटरों, और में मुक्त समूह है, (जो स्पष्ट रूप से सीमित रूप से उत्पन्न होता है, क्योंकि ), और मान लीजिए कि किसी प्राकृतिक संख्या के लिए रूप के के सभी तत्वों से युक्त उपसमुच्चय है। अनगिनत जनरेटरों में मुक्त समूह के लिए समरूपी है, और इसलिए इसे अंतिम रूप से उत्पन्न नहीं किया जा सकता है। हालाँकि, एक सीमित रूप से उत्पन्न एबेलियन समूह का प्रत्येक उपसमूह अपने आप में एक सीमित रूप से उत्पन्न होता है। वास्तव में, और अधिक कहा जा सकता है: सभी अंतिम रूप से उत्पन्न समूहों का वर्ग एक्सटेंशन के तहत बंद है। इसे देखने के लिए, (अंततः उत्पन्न) सामान्य उपसमूह और भागफल के लिए एक जनरेटिंग समुच्चय लें। फिर सामान्य उपसमूह के लिए जेनरेटर, भागफल के लिए जेनरेटर की पूर्वछवियों के साथ मिलकर, समूह उत्पन्न करते हैं।

उदाहरण

  • पूर्णांकों का गुणक समूह मॉड्यूलो 9, U9 = {1, 2, 4, 5, 7, 8}, गुणन mod 9 के तहत 9 के सापेक्ष अभाज्य सभी पूर्णांकों का समूह है। ध्यान दें कि 7, U9 का जनक नहीं है, क्योंकि

    जबकि 2 है, चूँकि
  • दूसरी ओर, Sn, डिग्री n का सममित समूह, n > 2 होने पर किसी एक तत्व द्वारा उत्पन्न नहीं होता है (चक्रीय समूह नहीं है)। हालाँकि, इन मामलों में Sn हमेशा दो क्रमपरिवर्तनों द्वारा उत्पन्न किया जा सकता है जो कि चक्र संकेतन में लिखे गए हैं (1 2) और (1 2 3 ... n) के रूप में लिखे गए हैं। उदाहरण के लिए, S3 के 6 तत्व दो जनरेटरों, (1 2) और (1 2 3) से उत्पन्न किया जा सकते हैं, जैसा कि निम्नलिखित समीकरणों के दाहिने तरफ से दिखाया गया है (संरचना बाएं से दाएं है):
e = (1 2)(1 2)
(1 2) = (1 2)
(1 3) = (1 2)(1 2 3)
(2 3) = (1 2 3)(1 2)
(1 2 3) = (1 2 3)
(1 3 2) = (1 2)(1 2 3)(1 2)
  • अनंत समूहों में परिमित जनरेटिंग समुच्चय भी हो सकते हैं। पूर्णांकों के योगात्मक समूह में जनरेटिंग समुच्चय के रूप में 1 होता है। तत्व 2 एक जनरेटिंग समुच्चय नहीं है, क्योंकि विषम संख्याएँ गायब होंगी। दो-तत्व उपसमुच्चय {3, 5} एक जनक समुच्चय है, क्योंकि (−5) + 3 + 3 = 1 (वास्तव में, सहअभाज्य पूर्णांक संख्याओं का कोई भी जोड़ा, बेज़आउट की पहचान के परिणामस्वरूप होता है)।
  • एन-गॉन (जिसका क्रम 2n है) का डायहेड्रल समूह समुच्चय {r, s} द्वारा उत्पन्न होता है, जहां r 2π/n द्वारा घूर्णन का प्रतिनिधित्व करता है और s समरूपता की रेखा पर कोई प्रतिबिंब है।[1]
  • क्रम , के चक्रीय समूह और एकता की वें जड़ें सभी एक ही तत्व द्वारा उत्पन्न होती हैं (वास्तव में, ये समूह एक दूसरे के लिए आइसोमोर्फिक हैं)।[2]
  • किसी समूह की प्रस्तुति को जेनरेटर के एक समुच्चय और उनके बीच संबंधों के संग्रह के रूप में परिभाषित किया गया है, इसलिए उस पृष्ठ पर सूचीबद्ध किसी भी उदाहरण में जेनरेटर समुच्चय के उदाहरण सम्मिलित हैं।[3]


मुक्त समूह

समुच्चय द्वारा उत्पन्न सबसे सामान्य समूह द्वारा स्वतंत्र रूप से उत्पन्न समूह है। द्वारा उत्पन्न प्रत्येक समूह इस समूह के भागफल के लिए आइसोमोर्फिक है, एक विशेषता जिसका उपयोग समूह की प्रस्तुति की अभिव्यक्ति में किया जाता है।

फ्रैटिनी उपसमूह

एक दिलचस्प साथी विषय गैर-जनरेटर का है। समूह का एक तत्व एक गैर-जनरेटर है यदि प्रत्येक समुच्चय जिसमें है जो उत्पन्न करता है, तब भी उत्पन्न करता है जब को से हटा दिया जाता है। जोड़ के साथ पूर्णांक में, एकमात्र गैर-जनरेटर 0 है। सभी गैर-जनरेटर का एक उपसमूह, फ्रैटिनी उपसमूह बनाते हैं।

अर्धसमूह और मोनोइड्स

यदि एक अर्धसमूह या एक मोनोइड है, तो भी कोई के जनरेटिंग समुच्चय की धारणा का उपयोग कर सकता है। , का एक अर्धसमूह/मोनॉइड जनरेटिंग समुच्चय है यदि , युक्त सबसे छोटा अर्धसमूह/मोनॉइड है।

ऊपर दिए गए परिमित योगों का उपयोग करके किसी समूह के समुच्चय को तैयार करने की परिभाषाओं को थोड़ा संशोधित किया जाना चाहिए जब कोई अर्धसमूह या मोनोइड से निपटता है। वास्तव में, इस परिभाषा में अब व्युत्क्रम संक्रिया की धारणा का उपयोग नहीं किया जाना चाहिए। यदि का प्रत्येक तत्व के तत्वों का एक सीमित योग है, तो समुच्चय को का एक अर्धसमूह उत्पन्न करने वाला समुच्चय कहा जाता है। इसी प्रकार, एक समुच्चय को का एक मोनोइड जेनरेटिंग समुच्चय कहा जाता है, यदि का प्रत्येक गैर-शून्य तत्व के तत्वों का एक सीमित योग है।

उदाहरण के लिए, {1} प्राकृतिक संख्याओं के समुच्चय का एक मोनॉइड जनरेटर है। समुच्चय {1} सकारात्मक प्राकृतिक संख्याओं का एक अर्धसमूह जनरेटर भी है। हालाँकि, पूर्णांक 0 को 1s के (गैर-रिक्त) योग के रूप में व्यक्त नहीं किया जा सकता है, इस प्रकार {1} प्राकृतिक संख्याओं का अर्धसमूह जनरेटर नहीं है।

इसी प्रकार, जबकि {1} पूर्णांकों के समुच्चय का एक समूह जनरेटर है, {1} पूर्णांकों के समुच्चय का मोनॉइड जनरेटर नहीं है। दरअसल, पूर्णांक -1 को 1s के सीमित योग के रूप में व्यक्त नहीं किया जा सकता है।

यह भी देखें

टिप्पणियाँ

  1. Dummit, David S.; Foote, Richard M. (2004). सार बीजगणित (3rd ed.). Wiley. p. 25. ISBN 9780471452348. OCLC 248917264.
  2. Dummit & Foote 2004, p. 54
  3. Dummit & Foote 2004, p. 26


संदर्भ


बाहरी संबंध