परिप्रेक्ष्य: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{broader|Perspective (geometry)}} | {{broader|Perspective (geometry)}} | ||
[[ज्यामिति]] में और [[ चित्रकला |चित्रकला]] में इसके अनुप्रयोगों में, एक परिप्रेक्ष्य एक निश्चित बिंदु से देखे गए दृश्य के चित्र तल में एक छवि का निर्माण होता है। | [[ज्यामिति]] में और [[ चित्रकला |चित्रकला]] में तथा इसके अनुप्रयोगों में, एक परिप्रेक्ष्य एक निश्चित बिंदु से देखे गए दृश्य के चित्र तल में एक छवि का निर्माण होता है। | ||
==ग्राफिक्स== | ==ग्राफिक्स== | ||
ग्राफिकल परिप्रेक्ष्य का विज्ञान यथार्थवादी छवियों को उचित अनुपात में बनाने के लिए परिप्रेक्ष्य का उपयोग करता है। [[किर्स्टी एंडरसन]] के अनुसार, परिप्रेक्ष्य का वर्णन करने वाले पहले लेखक [[लियोन अल्बर्टी]] थे, जिन्होंने अपने डी पिक्टुरा (1435) में लिखा था।<ref>[[Kirsti Andersen]] (2007) ''[[The Geometry of an Art]]'', page 1,Springer {{isbn|978-0-387-25961-1}}</ref> अंग्रेजी में, [[ब्रूक टेलर]] ने 1715 में अपना रैखिक परिप्रेक्ष्य प्रस्तुत किया, जहां उन्होंने समझाया कि परिप्रेक्ष्य ज्यामिति के नियमों के अनुसार किसी भी आंकड़े की उपस्थिति को एक | ग्राफिकल परिप्रेक्ष्य का विज्ञान यथार्थवादी छवियों को उचित अनुपात में बनाने के लिए परिप्रेक्ष्य का उपयोग करता है। [[किर्स्टी एंडरसन]] के अनुसार, परिप्रेक्ष्य का वर्णन करने वाले पहले लेखक [[लियोन अल्बर्टी]] थे, जिन्होंने अपने डी पिक्टुरा (1435) में लिखा था।<ref>[[Kirsti Andersen]] (2007) ''[[The Geometry of an Art]]'', page 1,Springer {{isbn|978-0-387-25961-1}}</ref> अंग्रेजी में, [[ब्रूक टेलर]] ने 1715 में अपना रैखिक परिप्रेक्ष्य प्रस्तुत किया, जहां उन्होंने समझाया कि परिप्रेक्ष्य ज्यामिति के नियमों के अनुसार किसी भी आंकड़े की उपस्थिति को एक समतल पर चित्रित करने की कला है।<ref>{{harvnb|Andersen|1992|loc=p. 75}}</ref> दूसरी पुस्तक, न्यू प्रिंसिपल्स ऑफ लीनियर पर्सपेक्टिव (1719) में टेलर ने लिखा था, | ||
:जब किसी आकृति के कई भागों से एक निश्चित नियम के अनुसार खींची गई रेखाएं एक तल को काटती हैं, और उस काटने या प्रतिच्छेदन द्वारा उस तल पर एक आकृति का वर्णन करती हैं, तो इस प्रकार वर्णित आकृति को अन्य आकृति का प्रक्षेपण कहा जाता है। उस प्रक्षेपण को उत्पन्न करने वाली रेखाएँ, सभी को मिलाकर, किरणों की प्रणाली कहलाती हैं। और जब वे सभी किरणें एक ही बिंदु से होकर गुजरती हैं, तो उन्हें किरणों का शंकु कहा जाता है। और जब उस बिंदु को दर्शक की आंख माना जाता है, तो किरणों की उस प्रणाली को ऑप्टिक शंकु कहा जाता है<ref>{{harvnb|Andersen|1992|loc=p. 163}}</ref> | :जब किसी आकृति के कई भागों से एक निश्चित नियम के अनुसार खींची गई रेखाएं एक तल को काटती हैं, और उस काटने या प्रतिच्छेदन द्वारा उस तल पर एक आकृति का वर्णन करती हैं, तो इस प्रकार वर्णित आकृति को अन्य आकृति का प्रक्षेपण कहा जाता है। उस प्रक्षेपण को उत्पन्न करने वाली रेखाएँ, सभी को मिलाकर, किरणों की प्रणाली कहलाती हैं। और जब वे सभी किरणें एक ही बिंदु से होकर गुजरती हैं, तो उन्हें किरणों का शंकु कहा जाता है। और जब उस बिंदु को दर्शक की आंख माना जाता है, तो किरणों की उस प्रणाली को ऑप्टिक शंकु कहा जाता है<ref>{{harvnb|Andersen|1992|loc=p. 163}}</ref> | ||
==प्रक्षेप्य ज्यामिति== | |||
[[File:projection geometry.svg|200px|thumb|एक परिप्रेक्ष्य:<br><math>ABCD \doublebarwedge A'B'C'D',</math>]][[प्रक्षेप्य ज्यामिति]] में एक रेखा के बिंदुओं को प्रक्षेप्य श्रेणी कहा जाता है, और एक बिंदु पर समतल की रेखाओं के समूह को [[पेंसिल (गणित)]] कहा जाता है। | |||
एक [[प्रक्षेप्य तल]] में दो रेखाएँ <math>\ell</math> और <math>m</math> और किसी भी रेखा पर उस तल का एक बिंदु P दिया गया है, <math>\ell</math> की सीमा के बिंदुओं और <math>m</math> की सीमा के बीच विशेषण मानचित्रण P पर पेंसिल की रेखाओं द्वारा निर्धारित किया जाता है। इसे एक (या अधिक उपयुक्त रूप से, केंद्र P के साथ एक केंद्रीय परिप्रेक्ष्य) परिप्रेक्ष्य कहा जाता है।<ref>{{harvnb|Coxeter|1969|loc=p. 242}}</ref> यह दिखाने के लिए एक विशेष प्रतीक का उपयोग किया गया है कि बिंदु X और Y एक परिप्रेक्ष्य <math>X \doublebarwedge Y </math> से संबंधित हैं, इस अंकन में, यह दिखाने के लिए कि परिप्रेक्ष्य का केंद्र P है, जिसे हम <math>X \ \overset {P}{\doublebarwedge} \ Y</math> लिख सकते है। | |||
परिप्रेक्ष्य के अस्तित्व का अर्थ है कि संबंधित बिंदु [[परिप्रेक्ष्य (ज्यामिति)]] में हैं। दोहरी अवधारणा (प्रक्षेपी ज्यामिति), अक्षीय परिप्रेक्ष्य, एक प्रक्षेप्य सीमा द्वारा निर्धारित दो पेंसिलों की रेखाओं के बीच पत्राचार है। | |||
[[ | |||
===प्रोजेक्टिविटी=== | |||
{{main|प्रोजेक्टिविटी}} | |||
दो परिप्रेक्ष्यों की संरचना, सामान्यतः, एक परिप्रेक्ष्य नहीं है। एक परिप्रेक्ष्य में दो या दो से अधिक परिप्रेक्ष्यों की संरचना को प्रोजेक्टिविटी कहा जाता है (''प्रोजेक्टिव ट्रांसफॉर्मेशन'', ''प्रोजेक्टिव कोलिनेशन'' और ''[[होमोग्राफी]]'' पर्यायवाची हैं)। | |||
दो परिप्रेक्ष्यों की संरचना, सामान्यतः, एक परिप्रेक्ष्य नहीं है। एक परिप्रेक्ष्य | प्रोजेक्टिविटी और परिप्रेक्ष्य से संबंधित कई परिणाम हैं जो किसी भी पैपियन प्रोजेक्टिव समतल में होते हैं:<ref>{{harvnb|Fishback|1969|loc=pp. 65–66}}</ref> | ||
प्रमेय: दो भिन्न-भिन्न प्रक्षेप्य श्रेणियों के बीच किसी भी प्रक्षेप्यता को दो से अधिक परिप्रेक्ष्यों की संरचना के रूप में लिखा जा सकता है। | |||
प्रमेय: दो | |||
प्रमेय: प्रक्षेप्य सीमा से लेकर स्वयं तक की किसी भी प्रक्षेप्यता को तीन परिप्रेक्ष्यों की संरचना के रूप में लिखा जा सकता है। | प्रमेय: प्रक्षेप्य सीमा से लेकर स्वयं तक की किसी भी प्रक्षेप्यता को तीन परिप्रेक्ष्यों की संरचना के रूप में लिखा जा सकता है। | ||
प्रमेय: दो | प्रमेय: दो भिन्न-भिन्न प्रक्षेप्य श्रेणियों के बीच एक प्रक्षेप्यता जो एक बिंदु को निश्चित करती है, एक परिप्रेक्ष्य है। | ||
===उच्च-आयामी परिप्रेक्ष्य=== | ===उच्च-आयामी परिप्रेक्ष्य=== | ||
किसी समतल में दो रेखाओं पर बिंदुओं के बीच विशेषण पत्राचार, उस तल के एक बिंदु द्वारा निर्धारित किया जाता है जो किसी भी रेखा पर नहीं है, उच्च-आयामी एनालॉग होते हैं जिन्हें परिप्रेक्ष्य भी कहा | किसी समतल में दो रेखाओं पर बिंदुओं के बीच विशेषण पत्राचार, उस तल के एक बिंदु द्वारा निर्धारित किया जाता है जो किसी भी रेखा पर नहीं है, उच्च-आयामी एनालॉग होते हैं जिन्हें परिप्रेक्ष्य भी कहा जाता है। | ||
मान लीजिए कि S<sub>m</sub> और T<sub>m</sub> दो भिन्न-भिन्न m-आयामी प्रक्षेप्य समष्टि हैं जो n-आयामी प्रक्षेप्य समष्टि R<sub>n</sub> में निहित हैं। मान लीजिए कि P<sub>n−m−1</sub>, R<sub>n</sub> का एक (n − m − 1)-आयामी उपसमष्टि है जिसमें S<sub>m</sub> या T<sub>m</sub> के साथ कोई भी बिंदु उभयनिष्ठ नहीं है। S<sub>m</sub> के प्रत्येक बिंदु X के लिए, X और P<sub>n−m−1</sub> द्वारा विस्तारित है, समष्टि L एक बिंदु {{nowrap|1=''Y'' = ''f''<sub>''P''</sub>(''X'')}} में T<sub>m</sub> से मिलता है। इस पत्राचार f<sub>P</sub> को परिप्रेक्ष्य भी कहा जाता है।<ref>{{harvnb|Pedoe|1988|loc=pp. 282–3}}</ref> ऊपर वर्णित केंद्रीय परिप्रेक्ष्य n = 2 और m = 1 के स्थिति में है। | |||
===परिप्रेक्ष्य संयोजन=== | ===परिप्रेक्ष्य संयोजन=== | ||
मान लीजिए S<sub>2</sub> और T<sub>2</sub> प्रक्षेप्य 3-समष्टि R<sub>3</sub> में दो भिन्न-भिन्न प्रक्षेप्य तल हैं। O और O* किसी भी समतल में R<sub>3</sub> के बिंदु नहीं होने पर, केंद्र O के परिप्रेक्ष्य से S<sub>2</sub> को T<sub>2</sub> पर प्रक्षेपित करने के लिए अंतिम खंड के निर्माण का उपयोग करें, इसके पश्चात केंद्र O* के परिप्रेक्ष्य से S<sub>2</sub> पर वापस T<sub>2</sub> का प्रक्षेपण करें, यह रचना स्वयं S<sub>2</sub> के बिंदुओं का एक विशेषण मानचित्र है जो संरेख बिंदुओं को संरक्षित करता है और इसे परिप्रेक्ष्य संरेखण (अधिक आधुनिक शब्दावली में केंद्रीय संरेखण) कहा जाता है।<ref>{{harvnb|Young|1930|loc=p. 116}}</ref> मान लीजिए φ S<sub>2</sub> का एक परिप्रेक्ष्य संरेखण है। S<sub>2</sub> और T<sub>2</sub> की प्रतिच्छेदन रेखा का प्रत्येक बिंदु φ द्वारा निश्चित किया जाएगा और इस रेखा को φ का अक्ष कहा जाता है। मान लीजिए बिंदु P, समतल S<sub>2</sub> के साथ रेखा OO* का प्रतिच्छेदन है। P को भी φ द्वारा स्थिर किया जाता है और S<sub>2</sub> की प्रत्येक रेखा जो P से होकर गुजरती है उसे φ द्वारा स्थिर किया जाता है। (निश्चित, लेकिन आवश्यक नहीं कि बिंदुवार निश्चित हो) P को φ का केंद्र कहा जाता है। P से न निकलने वाली S<sub>2</sub> की किसी भी रेखा पर φ का प्रतिबंध S<sub>2</sub> में केंद्रीय परिप्रेक्ष्य है जिसका केंद्र P उस रेखा और उस रेखा के बीच है जो φ के नीचे इसकी छवि है। | |||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 09:16, 13 July 2023
ज्यामिति में और चित्रकला में तथा इसके अनुप्रयोगों में, एक परिप्रेक्ष्य एक निश्चित बिंदु से देखे गए दृश्य के चित्र तल में एक छवि का निर्माण होता है।
ग्राफिक्स
ग्राफिकल परिप्रेक्ष्य का विज्ञान यथार्थवादी छवियों को उचित अनुपात में बनाने के लिए परिप्रेक्ष्य का उपयोग करता है। किर्स्टी एंडरसन के अनुसार, परिप्रेक्ष्य का वर्णन करने वाले पहले लेखक लियोन अल्बर्टी थे, जिन्होंने अपने डी पिक्टुरा (1435) में लिखा था।[1] अंग्रेजी में, ब्रूक टेलर ने 1715 में अपना रैखिक परिप्रेक्ष्य प्रस्तुत किया, जहां उन्होंने समझाया कि परिप्रेक्ष्य ज्यामिति के नियमों के अनुसार किसी भी आंकड़े की उपस्थिति को एक समतल पर चित्रित करने की कला है।[2] दूसरी पुस्तक, न्यू प्रिंसिपल्स ऑफ लीनियर पर्सपेक्टिव (1719) में टेलर ने लिखा था,
- जब किसी आकृति के कई भागों से एक निश्चित नियम के अनुसार खींची गई रेखाएं एक तल को काटती हैं, और उस काटने या प्रतिच्छेदन द्वारा उस तल पर एक आकृति का वर्णन करती हैं, तो इस प्रकार वर्णित आकृति को अन्य आकृति का प्रक्षेपण कहा जाता है। उस प्रक्षेपण को उत्पन्न करने वाली रेखाएँ, सभी को मिलाकर, किरणों की प्रणाली कहलाती हैं। और जब वे सभी किरणें एक ही बिंदु से होकर गुजरती हैं, तो उन्हें किरणों का शंकु कहा जाता है। और जब उस बिंदु को दर्शक की आंख माना जाता है, तो किरणों की उस प्रणाली को ऑप्टिक शंकु कहा जाता है[3]
प्रक्षेप्य ज्यामिति
प्रक्षेप्य ज्यामिति में एक रेखा के बिंदुओं को प्रक्षेप्य श्रेणी कहा जाता है, और एक बिंदु पर समतल की रेखाओं के समूह को पेंसिल (गणित) कहा जाता है।
एक प्रक्षेप्य तल में दो रेखाएँ और और किसी भी रेखा पर उस तल का एक बिंदु P दिया गया है, की सीमा के बिंदुओं और की सीमा के बीच विशेषण मानचित्रण P पर पेंसिल की रेखाओं द्वारा निर्धारित किया जाता है। इसे एक (या अधिक उपयुक्त रूप से, केंद्र P के साथ एक केंद्रीय परिप्रेक्ष्य) परिप्रेक्ष्य कहा जाता है।[4] यह दिखाने के लिए एक विशेष प्रतीक का उपयोग किया गया है कि बिंदु X और Y एक परिप्रेक्ष्य से संबंधित हैं, इस अंकन में, यह दिखाने के लिए कि परिप्रेक्ष्य का केंद्र P है, जिसे हम लिख सकते है।
परिप्रेक्ष्य के अस्तित्व का अर्थ है कि संबंधित बिंदु परिप्रेक्ष्य (ज्यामिति) में हैं। दोहरी अवधारणा (प्रक्षेपी ज्यामिति), अक्षीय परिप्रेक्ष्य, एक प्रक्षेप्य सीमा द्वारा निर्धारित दो पेंसिलों की रेखाओं के बीच पत्राचार है।
प्रोजेक्टिविटी
दो परिप्रेक्ष्यों की संरचना, सामान्यतः, एक परिप्रेक्ष्य नहीं है। एक परिप्रेक्ष्य में दो या दो से अधिक परिप्रेक्ष्यों की संरचना को प्रोजेक्टिविटी कहा जाता है (प्रोजेक्टिव ट्रांसफॉर्मेशन, प्रोजेक्टिव कोलिनेशन और होमोग्राफी पर्यायवाची हैं)।
प्रोजेक्टिविटी और परिप्रेक्ष्य से संबंधित कई परिणाम हैं जो किसी भी पैपियन प्रोजेक्टिव समतल में होते हैं:[5]
प्रमेय: दो भिन्न-भिन्न प्रक्षेप्य श्रेणियों के बीच किसी भी प्रक्षेप्यता को दो से अधिक परिप्रेक्ष्यों की संरचना के रूप में लिखा जा सकता है।
प्रमेय: प्रक्षेप्य सीमा से लेकर स्वयं तक की किसी भी प्रक्षेप्यता को तीन परिप्रेक्ष्यों की संरचना के रूप में लिखा जा सकता है।
प्रमेय: दो भिन्न-भिन्न प्रक्षेप्य श्रेणियों के बीच एक प्रक्षेप्यता जो एक बिंदु को निश्चित करती है, एक परिप्रेक्ष्य है।
उच्च-आयामी परिप्रेक्ष्य
किसी समतल में दो रेखाओं पर बिंदुओं के बीच विशेषण पत्राचार, उस तल के एक बिंदु द्वारा निर्धारित किया जाता है जो किसी भी रेखा पर नहीं है, उच्च-आयामी एनालॉग होते हैं जिन्हें परिप्रेक्ष्य भी कहा जाता है।
मान लीजिए कि Sm और Tm दो भिन्न-भिन्न m-आयामी प्रक्षेप्य समष्टि हैं जो n-आयामी प्रक्षेप्य समष्टि Rn में निहित हैं। मान लीजिए कि Pn−m−1, Rn का एक (n − m − 1)-आयामी उपसमष्टि है जिसमें Sm या Tm के साथ कोई भी बिंदु उभयनिष्ठ नहीं है। Sm के प्रत्येक बिंदु X के लिए, X और Pn−m−1 द्वारा विस्तारित है, समष्टि L एक बिंदु Y = fP(X) में Tm से मिलता है। इस पत्राचार fP को परिप्रेक्ष्य भी कहा जाता है।[6] ऊपर वर्णित केंद्रीय परिप्रेक्ष्य n = 2 और m = 1 के स्थिति में है।
परिप्रेक्ष्य संयोजन
मान लीजिए S2 और T2 प्रक्षेप्य 3-समष्टि R3 में दो भिन्न-भिन्न प्रक्षेप्य तल हैं। O और O* किसी भी समतल में R3 के बिंदु नहीं होने पर, केंद्र O के परिप्रेक्ष्य से S2 को T2 पर प्रक्षेपित करने के लिए अंतिम खंड के निर्माण का उपयोग करें, इसके पश्चात केंद्र O* के परिप्रेक्ष्य से S2 पर वापस T2 का प्रक्षेपण करें, यह रचना स्वयं S2 के बिंदुओं का एक विशेषण मानचित्र है जो संरेख बिंदुओं को संरक्षित करता है और इसे परिप्रेक्ष्य संरेखण (अधिक आधुनिक शब्दावली में केंद्रीय संरेखण) कहा जाता है।[7] मान लीजिए φ S2 का एक परिप्रेक्ष्य संरेखण है। S2 और T2 की प्रतिच्छेदन रेखा का प्रत्येक बिंदु φ द्वारा निश्चित किया जाएगा और इस रेखा को φ का अक्ष कहा जाता है। मान लीजिए बिंदु P, समतल S2 के साथ रेखा OO* का प्रतिच्छेदन है। P को भी φ द्वारा स्थिर किया जाता है और S2 की प्रत्येक रेखा जो P से होकर गुजरती है उसे φ द्वारा स्थिर किया जाता है। (निश्चित, लेकिन आवश्यक नहीं कि बिंदुवार निश्चित हो) P को φ का केंद्र कहा जाता है। P से न निकलने वाली S2 की किसी भी रेखा पर φ का प्रतिबंध S2 में केंद्रीय परिप्रेक्ष्य है जिसका केंद्र P उस रेखा और उस रेखा के बीच है जो φ के नीचे इसकी छवि है।
यह भी देखें
- परिप्रेक्ष्य प्रक्षेपण
- डेसार्गेस का प्रमेय
टिप्पणियाँ
- ↑ Kirsti Andersen (2007) The Geometry of an Art, page 1,Springer ISBN 978-0-387-25961-1
- ↑ Andersen 1992, p. 75
- ↑ Andersen 1992, p. 163
- ↑ Coxeter 1969, p. 242
- ↑ Fishback 1969, pp. 65–66
- ↑ Pedoe 1988, pp. 282–3
- ↑ Young 1930, p. 116
संदर्भ
- Andersen, Kirsti (1992), Brook Taylor's Work on Linear Perspective, Springer, ISBN 0-387-97486-5
- Coxeter, Harold Scott MacDonald (1969), Introduction to Geometry (2nd ed.), New York: John Wiley & Sons, ISBN 978-0-471-50458-0, MR 0123930
- Fishback, W.T. (1969), Projective and Euclidean Geometry, John Wiley & Sons
- Pedoe, Dan (1988), Geometry/A Comprehensive Course, Dover, ISBN 0-486-65812-0
- Young, John Wesley (1930), Projective Geometry, The Carus Mathematical Monographs (#4), Mathematical Association of America
बाहरी संबंध
- Christopher Cooper Perspectivities and Projectivities.
- James C. Morehead Jr. (1911) Perspective and Projective Geometries: A Comparison from Rice University.
- John Taylor Projective Geometry from University of Brighton.