गिब्स माप: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, गिब्स माप, [[जोशिया विलार्ड गिब्स]] के नाम पर रखा गया, [[संभाव्यता माप]] है जो संभाव्यता सिद्धांत और [[सांख्यिकीय यांत्रिकी]] की कई समस्याओं में प्रायः देखा जाता है। यह अनंत प्रणालियों के लिए विहित समूह का सामान्यीकरण है। [[विहित पहनावा|विहित समुच्चय]] पद्धति ''X'' के ''x (समकक्ष, यादृच्छिक चर X का मान x)'' अवस्था में | गणित में, गिब्स माप, [[जोशिया विलार्ड गिब्स]] के नाम पर रखा गया, [[संभाव्यता माप]] है जो संभाव्यता सिद्धांत और [[सांख्यिकीय यांत्रिकी]] की कई समस्याओं में प्रायः देखा जाता है। यह अनंत प्रणालियों के लिए विहित समूह का सामान्यीकरण है। [[विहित पहनावा|विहित समुच्चय]] पद्धति ''X'' के ''x (समकक्ष, यादृच्छिक चर X का मान x)'' अवस्था में | ||
:<math>P(X=x) = \frac{1}{Z(\beta)} \exp ( - \beta E(x))</math> के रूप में होने की | :<math>P(X=x) = \frac{1}{Z(\beta)} \exp ( - \beta E(x))</math> के रूप में होने की प्रायिकता देता है। | ||
यहाँ, {{math|''E''}} अवस्थाओं के | यहाँ, {{math|''E''}} अवस्थाओं के समष्टि से वास्तविक संख्याओं तक फलन है; भौतिकी अनुप्रयोगों में, {{math|''E''(''x'')}} की व्याख्या विन्यास x की ऊर्जा के रूप में की जाती है। पैरामीटर {{mvar|β}} मुक्त पैरामीटर है; भौतिकी में, यह [[उलटा तापमान|व्युत्क्रम तापमान]] है। [[सामान्यीकरण स्थिरांक]] {{math|''Z''(''β'')}} [[विभाजन फलन (गणित)]] है। यद्यपि, अनंत प्रणालियों में, कुल ऊर्जा अब सीमित संख्या नहीं है और इसका उपयोग किसी विहित समूह की संभाव्यता वितरण के पारंपरिक निर्माण में नहीं किया जा सकता है। सांख्यिकीय भौतिकी में पारंपरिक दृष्टिकोण ने [[गहन संपत्ति|गहन गुण]] की सीमा का अध्ययन किया क्योंकि परिमित प्रणाली का आकार अनंत ( [[थर्मोडायनामिक सीमा|ऊष्मागतिक सीमा]]) तक पहुंचता है। जब ऊर्जा फलन को उन शब्दों के योग के रूप में लिखा जा सकता है जिनमें प्रत्येक में परिमित उपप्रणाली से मात्र चर सम्मिलित होते हैं, तो गिब्स माप की धारणा वैकल्पिक दृष्टिकोण प्रदान करती है। गिब्स उपायों को [[रोलैंड डोब्रुशिन]], [[ऑस्कर लैनफोर्ड]] और [[ डेविड रूएल |डेविड रूएल]] जैसे संभाव्यता सिद्धांतकारों द्वारा प्रस्तावित किया गया था और परिमित प्रणालियों की सीमा लेने के अतिरिक्त सीधे अनंत प्रणालियों का अध्ययन करने के लिए रूपरेखा प्रदान की गई थी। | ||
एक माप गिब्स माप है यदि प्रत्येक परिमित उपप्रणाली पर इसके द्वारा उत्पन्न सप्रतिबन्ध | एक माप गिब्स माप है यदि प्रत्येक परिमित उपप्रणाली पर इसके द्वारा उत्पन्न सप्रतिबन्ध प्रायिकताएं स्थिरता की अवस्था को संतुष्ट करती हैं: यदि परिमित उपप्रणाली के बाहर स्वतंत्रता की सभी घात बद्धवत हैं, तो इन सीमा अवस्थाओं के अधीन उपप्रणाली के लिए विहित समुच्चय गिब्स में प्रायिकताओं से मेल खाता है स्वतंत्रता की बद्धवत घात पर [[सशर्त संभाव्यता|सप्रतिबन्ध संभाव्यता]] को मापें। | ||
हैमरस्ले-क्लिफ़ोर्ड प्रमेय का तात्पर्य है कि कोई भी संभाव्यता माप जो [[मार्कोव संपत्ति|मार्कोव गुण]] को संतुष्ट करता है वह ( | हैमरस्ले-क्लिफ़ोर्ड प्रमेय का तात्पर्य है कि कोई भी संभाव्यता माप जो [[मार्कोव संपत्ति|मार्कोव गुण]] को संतुष्ट करता है वह (समष्टिीय रूप से परिभाषित) ऊर्जा फलन के उचित विकल्प के लिए गिब्स माप है। इसलिए, गिब्स माप भौतिकी के बाहर व्यापक समस्याओं पर लागू होता है, जैसे [[हॉपफील्ड नेटवर्क]], [[मार्कोव नेटवर्क]], [[ मार्कोव तर्क नेटवर्क |मार्कोव तर्क नेटवर्क]] और गेम सिद्धांत और अर्थशास्त्र में इकोनो[[ भौतिक विज्ञान | भौतिक विज्ञान]] हैं। समष्टिीय (परिमित-सीमा) अन्योन्य क्रिया वाले पद्धति में गिब्स माप किसी दिए गए अपेक्षित [[ऊर्जा घनत्व]] के लिए [[एन्ट्रापी (सामान्य अवधारणा)]] घनत्व को अधिकतम करता है; या, समकक्ष, यह [[थर्मोडायनामिक मुक्त ऊर्जा|ऊष्मागतिक मुक्त ऊर्जा]] घनत्व को कम करता है। | ||
एक अनंत प्रणाली का गिब्स माप आवश्यक रूप से अद्वितीय नहीं है, परिमित प्रणाली के विहित समूह के विपरीत, जो अद्वितीय है। से अधिक गिब्स माप का अस्तित्व समरूपता टूटने और चरण संक्रमण चरण सह-अस्तित्व जैसी सांख्यिकीय घटनाओं से जुड़ा हुआ है। | एक अनंत प्रणाली का गिब्स माप आवश्यक रूप से अद्वितीय नहीं है, परिमित प्रणाली के विहित समूह के विपरीत, जो अद्वितीय है। से अधिक गिब्स माप का अस्तित्व समरूपता टूटने और चरण संक्रमण चरण सह-अस्तित्व जैसी सांख्यिकीय घटनाओं से जुड़ा हुआ है। | ||
==सांख्यिकीय भौतिकी== | ==सांख्यिकीय भौतिकी== | ||
किसी पद्धति पर गिब्स मापों का | किसी पद्धति पर गिब्स मापों का समूह सदैव उत्तल होता है,<ref>{{cite web |url=http://www.stat.yale.edu/~pollard/Courses/606.spring06/handouts/Gibbs1.pdf |title=Gibbs measures }}</ref> इसलिए या तो अद्वितीय गिब्स माप होता है (जिस अवस्था में पद्धति को [[ ergodic |ऊर्जापथी]] कहा जाता है), या अनंत रूप से कई हैं (और पद्धति को गैर ऊर्जापथी कहा जाता है)। गैर ऊर्जापथी स्थिति में, गिब्स उपायों को बहुत कम संख्या में विशेष गिब्स उपायों के [[उत्तल संयोजन]] के समूह के रूप में व्यक्त किया जा सकता है जिन्हें शुद्ध अवस्थाओं के रूप में जाना जाता है (शुद्ध अवस्थाओं की संबंधित परन्तु विशिष्ट धारणा के साथ भ्रमित नहीं होना चाहिए)। भौतिक अनुप्रयोगों में, हैमिल्टनियन (ऊर्जा फलन) में सामान्यतः समष्टिीयता के सिद्धांत का कुछ अर्थ होता है, और शुद्ध अवस्थाओं में [[क्लस्टर अपघटन]] गुण होती है जो दूर-दूर स्थित उपप्रणाली स्वतंत्र होती है। व्यवहार में, भौतिक रूप से यथार्थवादी प्रणालियाँ इन शुद्ध अवस्थाओं में से में पाई जाती हैं। | ||
यदि हैमिल्टनियन के | यदि हैमिल्टनियन के निकट समरूपता है, तो अद्वितीय (अर्थात ऊर्जापथी) गिब्स माप आवश्यक रूप से समरूपता के अंतर्गत अपरिवर्तनीय होगा। परन्तु एकाधिक (अर्थात गैर ऊर्जापथी) गिब्स उपायों की स्थिति में, हैमिल्टनियन समरूपता के अंतर्गत शुद्ध अवस्थाएं सामान्यतः अपरिवर्तनीय नहीं होती हैं। उदाहरण के लिए, क्रांतिक तापमान के निम्न अनंत लौहचुम्बकीय [[आइसिंग मॉडल]] में, दो [[शुद्ध अवस्थाएँ]] होती हैं, अधिकाशंतः-उच्च और अधिकाशंतः-निम्न की अवस्थाएँ, जो मॉडल की <math>\mathbb{Z}_2</math> समरूपता के अंतर्गत परस्पर परिवर्तित होती हैं। | ||
==मार्कोव गुण== | ==मार्कोव गुण== | ||
मार्कोव गुण का उदाहरण आइसिंग मॉडल के गिब्स माप में देखा जा सकता है। किसी दिए गए | मार्कोव गुण का उदाहरण आइसिंग मॉडल के गिब्स माप में देखा जा सकता है। किसी दिए गए चक्रण {{mvar|σ<sub>k</sub>}} की अवस्था s में होना की प्रायिकता, सिद्धांत रूप में, पद्धति में अन्य सभी चक्रणों की अवस्था पर निर्भर हो सकती है। इस प्रकार, हम प्रायिकता को | ||
:<math>P(\sigma_k = s\mid\sigma_j,\, j\ne k)</math> | :<math>P(\sigma_k = s\mid\sigma_j,\, j\ne k)</math> के रूप में लिख सकते हैं। | ||
यद्यपि, मात्र परिमित-श्रेणी के अन्योन्य क्रिया (उदाहरण के लिए, निकटतम- | यद्यपि, मात्र परिमित-श्रेणी के अन्योन्य क्रिया (उदाहरण के लिए, निकटतम-निकटवर्ती अन्योन्य क्रिया) वाले आइसिंग मॉडल में, हमारे निकट वस्तुतः | ||
:<math>P(\sigma_k = s\mid\sigma_j,\, j\ne k) = P(\sigma_k = s\mid\sigma_j,\, j\in N_k)</math>, | :<math>P(\sigma_k = s\mid\sigma_j,\, j\ne k) = P(\sigma_k = s\mid\sigma_j,\, j\in N_k)</math>, | ||
है, जहाँ {{mvar|N<sub>k</sub>}} स्थल {{mvar|k}} का निकटवर्ती है। अर्थात, स्थल {{mvar|k}} पर प्रायिकता मात्र सीमित निकटवर्ती में चक्रण पर निर्भर करती है। यह अंतिम समीकरण समष्टिीय मार्कोव गुण के रूप में है। इस गुण वाले मापों को कभी-कभी मार्कोव यादृच्छिक क्षेत्र कहा जाता है। अधिक दृढ़ता से, इसके विपरीत भी सत्य है: मार्कोव गुण वाले किसी भी धनात्मक संभाव्यता वितरण (प्रत्येक समष्टि गैर-शून्य घनत्व) को उचित ऊर्जा फलन के लिए गिब्स माप के रूप में दर्शाया जा सकता है।<ref>Ross Kindermann and J. Laurie Snell, [https://www.ams.org/online_bks/conm1/ Markov Random Fields and Their Applications] (1980) American Mathematical Society, {{ISBN|0-8218-5001-6}}</ref> यह हैमरस्ले-क्लिफ़ोर्ड प्रमेय है। | |||
==जालकों पर औपचारिक परिभाषा== | ==जालकों पर औपचारिक परिभाषा== | ||
एक | एक जालक पर यादृच्छिक क्षेत्र के विशेष स्थिति के लिए औपचारिक परिभाषा इस प्रकार है। यद्यपि, गिब्स माप का विचार इससे कहीं अधिक सामान्य है। | ||
एक [[जाली (समूह)]] पर गिब्स यादृच्छिक क्षेत्र की परिभाषा के लिए कुछ शब्दावली की आवश्यकता होती है: | एक [[जाली (समूह)|जालक (समूह)]] पर गिब्स यादृच्छिक क्षेत्र की परिभाषा के लिए कुछ शब्दावली की आवश्यकता होती है: | ||
* | * जालक: गणनीय समुच्चय <math>\mathbb{L}</math>। | ||
* एकल- | * एकल-चक्रण समष्टि: [[संभाव्यता स्थान|संभाव्यता समष्टि]] <math>(S,\mathcal{S},\lambda)</math>। | ||
* [[कॉन्फ़िगरेशन स्थान (भौतिकी)]]: <math>(\Omega, \mathcal{F})</math>, | * [[कॉन्फ़िगरेशन स्थान (भौतिकी)|संरूपण समष्टि (भौतिकी)]]: <math>(\Omega, \mathcal{F})</math>, जहाँ <math>\Omega = S^{\mathbb{L}}</math> और <math>\mathcal{F} = \mathcal{S}^{\mathbb{L}}</math>। | ||
* एक विन्यास | * एक विन्यास {{math|''ω'' ∈ Ω}} और उपसमुच्चय <math>\Lambda \subset \mathbb{L}</math> दिया गया है, {{mvar|ω}} से {{math|Λ}} का प्रतिबंध <math>\omega_\Lambda = (\omega(t))_{t\in\Lambda}</math> है। यदि <math>\Lambda_1\cap\Lambda_2=\emptyset</math> और <math>\Lambda_1\cup\Lambda_2=\mathbb{L}</math>, फिर संरूपण <math>\omega_{\Lambda_1}\omega_{\Lambda_2}</math> वह संरूपण है जिसके प्रतिबंध हैं {{math|Λ<sub>1</sub>}} और {{math|Λ<sub>2</sub>}} हैं <math>\omega_{\Lambda_1}</math> और <math>\omega_{\Lambda_2}</math>, क्रमश। | ||
* | * समूह <math>\mathcal{L}</math> के सभी परिमित उपसमूहों में से <math>\mathbb{L}</math>। | ||
* प्रत्येक उपसमुच्चय के लिए <math>\Lambda\subset\mathbb{L}</math>, <math>\mathcal{F}_\Lambda</math> सिग्मा बीजगणित है|{{mvar|σ}}-कार्यों के परिवार द्वारा उत्पन्न बीजगणित <math>(\sigma(t))_{t\in\Lambda}</math>, | * प्रत्येक उपसमुच्चय के लिए <math>\Lambda\subset\mathbb{L}</math>, <math>\mathcal{F}_\Lambda</math> सिग्मा बीजगणित है|{{mvar|σ}}-कार्यों के परिवार द्वारा उत्पन्न बीजगणित <math>(\sigma(t))_{t\in\Lambda}</math>, जहाँ<math>\sigma(t)(\omega)=\omega(t)</math>। इनका मिलन {{mvar|σ}}-बीजगणित के रूप में <math>\Lambda</math> भिन्न-भिन्न होता है <math>\mathcal{L}</math> जालक पर [[सिलेंडर सेट|सिलेंडर समूह]] का बीजगणित है। | ||
*[[संभावना]]: परिवार <math>\Phi=(\Phi_A)_{A\in\mathcal{L}}</math> कार्यों का {{math|Φ<sub>''A''</sub> : Ω → '''R'''}} ऐसा है कि | *[[संभावना|प्रायिकता]]: परिवार <math>\Phi=(\Phi_A)_{A\in\mathcal{L}}</math> कार्यों का {{math|Φ<sub>''A''</sub> : Ω → '''R'''}} ऐसा है कि | ||
*# प्रत्येक के लिए <math>A\in\mathcal{L}, \Phi_A</math> है <math>\mathcal{F}_A</math>-मापने योग्य, अर्थात यह मात्र प्रतिबंध पर निर्भर करता है <math>\omega_A</math> (और ऐसा मापनपूर्वक करता है)। | *# प्रत्येक के लिए <math>A\in\mathcal{L}, \Phi_A</math> है <math>\mathcal{F}_A</math>-मापने योग्य, अर्थात यह मात्र प्रतिबंध पर निर्भर करता है <math>\omega_A</math> (और ऐसा मापनपूर्वक करता है)। | ||
*# सभी के लिए <math>\Lambda\in\mathcal{L}</math> और {{math|''ω'' ∈ Ω}}, निम्नलिखित श्रृंखला मौजूद है:{{definition|date=December 2017}} | *# सभी के लिए <math>\Lambda\in\mathcal{L}</math> और {{math|''ω'' ∈ Ω}}, निम्नलिखित श्रृंखला मौजूद है:{{definition|date=December 2017}} | ||
:::<math>H_\Lambda^\Phi(\omega) = \sum_{A\in\mathcal{L}, A\cap\Lambda\neq\emptyset} \Phi_A(\omega).</math> | :::<math>H_\Lambda^\Phi(\omega) = \sum_{A\in\mathcal{L}, A\cap\Lambda\neq\emptyset} \Phi_A(\omega).</math> | ||
हम व्याख्या करते हैं {{math|Φ<sub>''A''</sub>}}परिमित | हम व्याख्या करते हैं {{math|Φ<sub>''A''</sub>}}परिमित समूह ए के सभी बिंदुओं के बीच बातचीत से जुड़ी कुल ऊर्जा (हैमिल्टनियन) में योगदान के रूप में। | ||
तब <math>H_\Lambda^\Phi(\omega)</math> मिलने वाले सभी परिमित समुच्चयों A की कुल ऊर्जा में योगदान के रूप में <math>\Lambda</math> | तब <math>H_\Lambda^\Phi(\omega)</math> मिलने वाले सभी परिमित समुच्चयों A की कुल ऊर्जा में योगदान के रूप में <math>\Lambda</math>। ध्यान दें कि कुल ऊर्जा सामान्यतः अनंत होती है, परन्तु जब हम प्रत्येक का समष्टिीयकरण करते हैं <math>\Lambda</math> यह सीमित हो सकता है, हमें आशा है। | ||
* हैमिल्टनियन यांत्रिकी#गणितीय औपचारिकता <math>\Lambda\in\mathcal{L}</math> सीमा प्रतिबन्धों के साथ <math>\bar\omega</math>, क्षमता के लिए {{math|Φ}}, द्वारा परिभाषित किया गया है | * हैमिल्टनियन यांत्रिकी#गणितीय औपचारिकता <math>\Lambda\in\mathcal{L}</math> सीमा प्रतिबन्धों के साथ <math>\bar\omega</math>, क्षमता के लिए {{math|Φ}}, द्वारा परिभाषित किया गया है | ||
::<math>H_\Lambda^\Phi(\omega \mid \bar\omega) = H_\Lambda^\Phi \left(\omega_\Lambda\bar\omega_{\Lambda^c} \right )</math> | ::<math>H_\Lambda^\Phi(\omega \mid \bar\omega) = H_\Lambda^\Phi \left(\omega_\Lambda\bar\omega_{\Lambda^c} \right )</math> | ||
: | :जहाँ<math>\Lambda^c = \mathbb{L}\setminus\Lambda</math>। | ||
* विभाजन फलन (गणित) में <math>\Lambda\in\mathcal{L}</math> सीमा प्रतिबन्धों के साथ <math>\bar\omega</math> और व्युत्क्रम तापमान {{math|''β'' > 0}} ( | * विभाजन फलन (गणित) में <math>\Lambda\in\mathcal{L}</math> सीमा प्रतिबन्धों के साथ <math>\bar\omega</math> और व्युत्क्रम तापमान {{math|''β'' > 0}} (प्रायिकता के लिए {{math|Φ}} और {{mvar|λ}}) द्वारा परिभाषित किया गया है | ||
::<math>Z_\Lambda^\Phi(\bar\omega) = \int \lambda^\Lambda(\mathrm{d}\omega) \exp(-\beta H_\Lambda^\Phi(\omega \mid \bar\omega)),</math> | ::<math>Z_\Lambda^\Phi(\bar\omega) = \int \lambda^\Lambda(\mathrm{d}\omega) \exp(-\beta H_\Lambda^\Phi(\omega \mid \bar\omega)),</math> | ||
:कहाँ | :कहाँ | ||
::<math>\lambda^\Lambda(\mathrm{d}\omega) = \prod_{t\in\Lambda}\lambda(\mathrm{d}\omega(t)),</math> | ::<math>\lambda^\Lambda(\mathrm{d}\omega) = \prod_{t\in\Lambda}\lambda(\mathrm{d}\omega(t)),</math> | ||
:उत्पाद माप है | :उत्पाद माप है | ||
:क्षमता {{math|Φ}} है {{mvar|λ}}-स्वीकार्य यदि <math>Z_\Lambda^\Phi(\bar\omega)</math> सभी के लिए सीमित है <math>\Lambda\in\mathcal{L}, \bar\omega\in\Omega</math> और {{math|''β'' > 0}} | :क्षमता {{math|Φ}} है {{mvar|λ}}-स्वीकार्य यदि <math>Z_\Lambda^\Phi(\bar\omega)</math> सभी के लिए सीमित है <math>\Lambda\in\mathcal{L}, \bar\omega\in\Omega</math> और {{math|''β'' > 0}}। | ||
:एक संभाव्यता माप {{mvar|μ}} पर <math>(\Omega,\mathcal{F})</math> के लिए गिब्स माप है {{mvar|λ}}-स्वीकार्य क्षमता {{math|Φ}} यदि यह डोब्रुशिन-लैनफोर्ड-रूएल (डीएलआर) समीकरण को संतुष्ट करता है | :एक संभाव्यता माप {{mvar|μ}} पर <math>(\Omega,\mathcal{F})</math> के लिए गिब्स माप है {{mvar|λ}}-स्वीकार्य क्षमता {{math|Φ}} यदि यह डोब्रुशिन-लैनफोर्ड-रूएल (डीएलआर) समीकरण को संतुष्ट करता है | ||
::<math>\int \mu(\mathrm{d}\bar\omega)Z_\Lambda^\Phi(\bar\omega)^{-1} \int\lambda^\Lambda(\mathrm{d}\omega) \exp(-\beta H_\Lambda^\Phi(\omega \mid \bar\omega)) 1_A(\omega_\Lambda\bar\omega_{\Lambda^c}) = \mu(A),</math> | ::<math>\int \mu(\mathrm{d}\bar\omega)Z_\Lambda^\Phi(\bar\omega)^{-1} \int\lambda^\Lambda(\mathrm{d}\omega) \exp(-\beta H_\Lambda^\Phi(\omega \mid \bar\omega)) 1_A(\omega_\Lambda\bar\omega_{\Lambda^c}) = \mu(A),</math> | ||
:सभी के लिए <math>A\in\mathcal{F}</math> और <math>\Lambda\in\mathcal{L}</math> | :सभी के लिए <math>A\in\mathcal{F}</math> और <math>\Lambda\in\mathcal{L}</math>। | ||
===एक उदाहरण=== | ===एक उदाहरण=== | ||
उपरोक्त परिभाषाओं को समझने में मदद के लिए, निकटतम- | उपरोक्त परिभाषाओं को समझने में मदद के लिए, निकटतम-निकटवर्ती अन्योन्य क्रिया (युग्मन स्थिरांक) के साथ आइसिंग मॉडल के महत्वपूर्ण उदाहरण में संबंधित मात्राएं यहां दी गई हैं {{mvar|J}}) और चुंबकीय क्षेत्र ({{mvar|h}}), पर {{math|'''Z'''<sup>''d''</sup>}}: | ||
* | *जालक बस है <math>\mathbb{L} = \mathbf{Z}^d</math>। | ||
* सिंगल- | * सिंगल-चक्रण स्पेस है {{math|''S'' {{=}} {−1, 1}.}} | ||
* | *प्रायिकता द्वारा दी गई है | ||
::<math>\Phi_A(\omega) = \begin{cases} | ::<math>\Phi_A(\omega) = \begin{cases} | ||
-J\,\omega(t_1)\omega(t_2) & \text{if } A=\{t_1,t_2\} \text{ with } \|t_2-t_1\|_1 = 1 \\ | -J\,\omega(t_1)\omega(t_2) & \text{if } A=\{t_1,t_2\} \text{ with } \|t_2-t_1\|_1 = 1 \\ |
Revision as of 20:17, 8 July 2023
गणित में, गिब्स माप, जोशिया विलार्ड गिब्स के नाम पर रखा गया, संभाव्यता माप है जो संभाव्यता सिद्धांत और सांख्यिकीय यांत्रिकी की कई समस्याओं में प्रायः देखा जाता है। यह अनंत प्रणालियों के लिए विहित समूह का सामान्यीकरण है। विहित समुच्चय पद्धति X के x (समकक्ष, यादृच्छिक चर X का मान x) अवस्था में
- के रूप में होने की प्रायिकता देता है।
यहाँ, E अवस्थाओं के समष्टि से वास्तविक संख्याओं तक फलन है; भौतिकी अनुप्रयोगों में, E(x) की व्याख्या विन्यास x की ऊर्जा के रूप में की जाती है। पैरामीटर β मुक्त पैरामीटर है; भौतिकी में, यह व्युत्क्रम तापमान है। सामान्यीकरण स्थिरांक Z(β) विभाजन फलन (गणित) है। यद्यपि, अनंत प्रणालियों में, कुल ऊर्जा अब सीमित संख्या नहीं है और इसका उपयोग किसी विहित समूह की संभाव्यता वितरण के पारंपरिक निर्माण में नहीं किया जा सकता है। सांख्यिकीय भौतिकी में पारंपरिक दृष्टिकोण ने गहन गुण की सीमा का अध्ययन किया क्योंकि परिमित प्रणाली का आकार अनंत ( ऊष्मागतिक सीमा) तक पहुंचता है। जब ऊर्जा फलन को उन शब्दों के योग के रूप में लिखा जा सकता है जिनमें प्रत्येक में परिमित उपप्रणाली से मात्र चर सम्मिलित होते हैं, तो गिब्स माप की धारणा वैकल्पिक दृष्टिकोण प्रदान करती है। गिब्स उपायों को रोलैंड डोब्रुशिन, ऑस्कर लैनफोर्ड और डेविड रूएल जैसे संभाव्यता सिद्धांतकारों द्वारा प्रस्तावित किया गया था और परिमित प्रणालियों की सीमा लेने के अतिरिक्त सीधे अनंत प्रणालियों का अध्ययन करने के लिए रूपरेखा प्रदान की गई थी।
एक माप गिब्स माप है यदि प्रत्येक परिमित उपप्रणाली पर इसके द्वारा उत्पन्न सप्रतिबन्ध प्रायिकताएं स्थिरता की अवस्था को संतुष्ट करती हैं: यदि परिमित उपप्रणाली के बाहर स्वतंत्रता की सभी घात बद्धवत हैं, तो इन सीमा अवस्थाओं के अधीन उपप्रणाली के लिए विहित समुच्चय गिब्स में प्रायिकताओं से मेल खाता है स्वतंत्रता की बद्धवत घात पर सप्रतिबन्ध संभाव्यता को मापें।
हैमरस्ले-क्लिफ़ोर्ड प्रमेय का तात्पर्य है कि कोई भी संभाव्यता माप जो मार्कोव गुण को संतुष्ट करता है वह (समष्टिीय रूप से परिभाषित) ऊर्जा फलन के उचित विकल्प के लिए गिब्स माप है। इसलिए, गिब्स माप भौतिकी के बाहर व्यापक समस्याओं पर लागू होता है, जैसे हॉपफील्ड नेटवर्क, मार्कोव नेटवर्क, मार्कोव तर्क नेटवर्क और गेम सिद्धांत और अर्थशास्त्र में इकोनो भौतिक विज्ञान हैं। समष्टिीय (परिमित-सीमा) अन्योन्य क्रिया वाले पद्धति में गिब्स माप किसी दिए गए अपेक्षित ऊर्जा घनत्व के लिए एन्ट्रापी (सामान्य अवधारणा) घनत्व को अधिकतम करता है; या, समकक्ष, यह ऊष्मागतिक मुक्त ऊर्जा घनत्व को कम करता है।
एक अनंत प्रणाली का गिब्स माप आवश्यक रूप से अद्वितीय नहीं है, परिमित प्रणाली के विहित समूह के विपरीत, जो अद्वितीय है। से अधिक गिब्स माप का अस्तित्व समरूपता टूटने और चरण संक्रमण चरण सह-अस्तित्व जैसी सांख्यिकीय घटनाओं से जुड़ा हुआ है।
सांख्यिकीय भौतिकी
किसी पद्धति पर गिब्स मापों का समूह सदैव उत्तल होता है,[1] इसलिए या तो अद्वितीय गिब्स माप होता है (जिस अवस्था में पद्धति को ऊर्जापथी कहा जाता है), या अनंत रूप से कई हैं (और पद्धति को गैर ऊर्जापथी कहा जाता है)। गैर ऊर्जापथी स्थिति में, गिब्स उपायों को बहुत कम संख्या में विशेष गिब्स उपायों के उत्तल संयोजन के समूह के रूप में व्यक्त किया जा सकता है जिन्हें शुद्ध अवस्थाओं के रूप में जाना जाता है (शुद्ध अवस्थाओं की संबंधित परन्तु विशिष्ट धारणा के साथ भ्रमित नहीं होना चाहिए)। भौतिक अनुप्रयोगों में, हैमिल्टनियन (ऊर्जा फलन) में सामान्यतः समष्टिीयता के सिद्धांत का कुछ अर्थ होता है, और शुद्ध अवस्थाओं में क्लस्टर अपघटन गुण होती है जो दूर-दूर स्थित उपप्रणाली स्वतंत्र होती है। व्यवहार में, भौतिक रूप से यथार्थवादी प्रणालियाँ इन शुद्ध अवस्थाओं में से में पाई जाती हैं।
यदि हैमिल्टनियन के निकट समरूपता है, तो अद्वितीय (अर्थात ऊर्जापथी) गिब्स माप आवश्यक रूप से समरूपता के अंतर्गत अपरिवर्तनीय होगा। परन्तु एकाधिक (अर्थात गैर ऊर्जापथी) गिब्स उपायों की स्थिति में, हैमिल्टनियन समरूपता के अंतर्गत शुद्ध अवस्थाएं सामान्यतः अपरिवर्तनीय नहीं होती हैं। उदाहरण के लिए, क्रांतिक तापमान के निम्न अनंत लौहचुम्बकीय आइसिंग मॉडल में, दो शुद्ध अवस्थाएँ होती हैं, अधिकाशंतः-उच्च और अधिकाशंतः-निम्न की अवस्थाएँ, जो मॉडल की समरूपता के अंतर्गत परस्पर परिवर्तित होती हैं।
मार्कोव गुण
मार्कोव गुण का उदाहरण आइसिंग मॉडल के गिब्स माप में देखा जा सकता है। किसी दिए गए चक्रण σk की अवस्था s में होना की प्रायिकता, सिद्धांत रूप में, पद्धति में अन्य सभी चक्रणों की अवस्था पर निर्भर हो सकती है। इस प्रकार, हम प्रायिकता को
- के रूप में लिख सकते हैं।
यद्यपि, मात्र परिमित-श्रेणी के अन्योन्य क्रिया (उदाहरण के लिए, निकटतम-निकटवर्ती अन्योन्य क्रिया) वाले आइसिंग मॉडल में, हमारे निकट वस्तुतः
- ,
है, जहाँ Nk स्थल k का निकटवर्ती है। अर्थात, स्थल k पर प्रायिकता मात्र सीमित निकटवर्ती में चक्रण पर निर्भर करती है। यह अंतिम समीकरण समष्टिीय मार्कोव गुण के रूप में है। इस गुण वाले मापों को कभी-कभी मार्कोव यादृच्छिक क्षेत्र कहा जाता है। अधिक दृढ़ता से, इसके विपरीत भी सत्य है: मार्कोव गुण वाले किसी भी धनात्मक संभाव्यता वितरण (प्रत्येक समष्टि गैर-शून्य घनत्व) को उचित ऊर्जा फलन के लिए गिब्स माप के रूप में दर्शाया जा सकता है।[2] यह हैमरस्ले-क्लिफ़ोर्ड प्रमेय है।
जालकों पर औपचारिक परिभाषा
एक जालक पर यादृच्छिक क्षेत्र के विशेष स्थिति के लिए औपचारिक परिभाषा इस प्रकार है। यद्यपि, गिब्स माप का विचार इससे कहीं अधिक सामान्य है।
एक जालक (समूह) पर गिब्स यादृच्छिक क्षेत्र की परिभाषा के लिए कुछ शब्दावली की आवश्यकता होती है:
- जालक: गणनीय समुच्चय ।
- एकल-चक्रण समष्टि: संभाव्यता समष्टि ।
- संरूपण समष्टि (भौतिकी): , जहाँ और ।
- एक विन्यास ω ∈ Ω और उपसमुच्चय दिया गया है, ω से Λ का प्रतिबंध है। यदि और , फिर संरूपण वह संरूपण है जिसके प्रतिबंध हैं Λ1 और Λ2 हैं और , क्रमश।
- समूह के सभी परिमित उपसमूहों में से ।
- प्रत्येक उपसमुच्चय के लिए , सिग्मा बीजगणित है|σ-कार्यों के परिवार द्वारा उत्पन्न बीजगणित , जहाँ। इनका मिलन σ-बीजगणित के रूप में भिन्न-भिन्न होता है जालक पर सिलेंडर समूह का बीजगणित है।
- प्रायिकता: परिवार कार्यों का ΦA : Ω → R ऐसा है कि
- प्रत्येक के लिए है -मापने योग्य, अर्थात यह मात्र प्रतिबंध पर निर्भर करता है (और ऐसा मापनपूर्वक करता है)।
- सभी के लिए और ω ∈ Ω, निम्नलिखित श्रृंखला मौजूद है:[when defined as?]
हम व्याख्या करते हैं ΦAपरिमित समूह ए के सभी बिंदुओं के बीच बातचीत से जुड़ी कुल ऊर्जा (हैमिल्टनियन) में योगदान के रूप में। तब मिलने वाले सभी परिमित समुच्चयों A की कुल ऊर्जा में योगदान के रूप में । ध्यान दें कि कुल ऊर्जा सामान्यतः अनंत होती है, परन्तु जब हम प्रत्येक का समष्टिीयकरण करते हैं यह सीमित हो सकता है, हमें आशा है।
- हैमिल्टनियन यांत्रिकी#गणितीय औपचारिकता सीमा प्रतिबन्धों के साथ , क्षमता के लिए Φ, द्वारा परिभाषित किया गया है
- जहाँ।
- विभाजन फलन (गणित) में सीमा प्रतिबन्धों के साथ और व्युत्क्रम तापमान β > 0 (प्रायिकता के लिए Φ और λ) द्वारा परिभाषित किया गया है
- कहाँ
- उत्पाद माप है
- क्षमता Φ है λ-स्वीकार्य यदि सभी के लिए सीमित है और β > 0।
- एक संभाव्यता माप μ पर के लिए गिब्स माप है λ-स्वीकार्य क्षमता Φ यदि यह डोब्रुशिन-लैनफोर्ड-रूएल (डीएलआर) समीकरण को संतुष्ट करता है
- सभी के लिए और ।
एक उदाहरण
उपरोक्त परिभाषाओं को समझने में मदद के लिए, निकटतम-निकटवर्ती अन्योन्य क्रिया (युग्मन स्थिरांक) के साथ आइसिंग मॉडल के महत्वपूर्ण उदाहरण में संबंधित मात्राएं यहां दी गई हैं J) और चुंबकीय क्षेत्र (h), पर Zd:
- जालक बस है ।
- सिंगल-चक्रण स्पेस है S = {−1, 1}.
- प्रायिकता द्वारा दी गई है
यह भी देखें
- बोल्ट्ज़मैन वितरण
- घातीय परिवार
- गिब्स एल्गोरिथ्म
- गिब्स नमूनाकरण
- इंटरैक्टिंग कण प्रणाली
- संभावित खेल#बद्ध तर्कसंगत मॉडल
- सॉफ्टमैक्स फलन
- स्टोकेस्टिक सेलुलर ऑटोमेटा
संदर्भ
- ↑ "Gibbs measures" (PDF).
- ↑ Ross Kindermann and J. Laurie Snell, Markov Random Fields and Their Applications (1980) American Mathematical Society, ISBN 0-8218-5001-6
अग्रिम पठन
- Georgii, H.-O. (2011) [1988]. Gibbs Measures and Phase Transitions (2nd ed.). Berlin: de Gruyter. ISBN 978-3-11-025029-9.
- Friedli, S.; Velenik, Y. (2017). Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction. Cambridge: Cambridge University Press. ISBN 9781107184824.