समर्थन (माप सिद्धांत): Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
गणित में, एक माप <math>\mu</math> के '''समर्थन''' का अर्थ होता है कि यह माप अंतरिक्ष <math>X</math> में "प्रवेश करता है"। यह निर्धारित किया जाता है कि यह सबसे बड़ा ([[बंद वाला संख्या|बंद]]) [[उपसमूह]] है जिसके लिए प्रत्येक बिंदु के प्रत्येक [[खुला समूह|खुले]] [[आस-पासी (गणित)|प्रतिवेश]] का माप धनात्मक होता है।
गणित में, एक माप <math>\mu</math> के '''समर्थन''' का अर्थ होता है कि यह माप समष्टि <math>X</math> में "प्रवेश करता है"। यह निर्धारित किया जाता है कि यह सबसे बड़ा ([[बंद वाला संख्या|संवृत्त]]) [[उपसमूह]] है जिसके लिए प्रत्येक बिंदु के प्रत्येक [[खुला समूह|विवृत्त]] [[आस-पासी (गणित)|प्रतिवेश]] का माप धनात्मक होता है।


==प्रेरणा==
==प्रेरणा==


गैर-नकारात्मक माप <math>\mu</math> एक मापनीय अंतरिक्ष <math>(X, \Sigma)</math> पर वास्तव में एक फलन  <math>\mu : \Sigma \to [0, +\infty]</math> होता है। इसलिए, सामान्य रूप से [[समर्थन (गणित)|समर्थन]] की मान्यता के दृष्टिकोण से, माप <math>\mu</math> का समर्थन <math>\Sigma</math> का उपसमूह होता है:
गैर-नकारात्मक माप <math>\mu</math> एक मापनीय समष्टि <math>(X, \Sigma)</math> पर वास्तव में एक फलन  <math>\mu : \Sigma \to [0, +\infty]</math> होता है। इसलिए, सामान्य रूप से [[समर्थन (गणित)|समर्थन]] की मान्यता के दृष्टिकोण से, माप <math>\mu</math> का समर्थन <math>\Sigma</math> का उपसमूह होता है:
<math display=block>\operatorname{supp} (\mu) := \overline{{A \in \Sigma ,\vert, \mu(A) \neq 0}}</math>यहां अद्यावधिक चिह्न [[आवरण (टोपोलॉजी)|समूह आवरण]] को दर्शाता है। यद्यपि, यह परिभाषा कुछ सीमा तक असंतुष्टिप्रद है: हम आवरण की धारणा का उपयोग करते हैं, परंतु  हमारे पास <math>\Sigma</math> पर भी एक सांस्थानिक नहीं है। हमारी वास्तविक आवश्यकता है कि हम जानें कि अंतरिक्ष <math>X</math> में माप <math>\mu</math> यहां गैर-शून्य होता है। दो उदाहरणों पर विचार करें:[[लेबेस्ग माप]] <math>\lambda</math> वास्तविक रेखा <math>\Reals</math> पर है। स्पष्ट है कि <math>\lambda</math> पूरी वास्तविक रेखा पर "रहता है"।
<math display=block>\operatorname{supp} (\mu) := \overline{{A \in \Sigma ,\vert, \mu(A) \neq 0}}</math>यहां अद्यावधिक चिह्न [[आवरण (टोपोलॉजी)|समूह आवरण]] को दर्शाता है। यद्यपि, यह परिभाषा कुछ सीमा तक असंतुष्टिप्रद है: हम आवरण की धारणा का उपयोग करते हैं, परंतु  हमारे पास <math>\Sigma</math> पर भी एक सांस्थानिक नहीं है। हमारी वास्तविक आवश्यकता है कि हम जानें कि समष्टि <math>X</math> में माप <math>\mu</math> यहां गैर-शून्य होता है। दो उदाहरणों पर विचार करें:[[लेबेस्ग माप]] <math>\lambda</math> वास्तविक रेखा <math>\Reals</math> पर है। स्पष्ट है कि <math>\lambda</math> पूरी वास्तविक रेखा पर "रहता है"।
#एक बिना आवश्यकता के [[दिराक माप]] <math>\delta_p</math> वहाँ किसी बिंदु <math>p \in \Reals</math> पर होता है। फिर भी, बौद्धिकता सुझाव देती है कि माप <math>\delta_p</math> केवल बिंदु <math>p</math> पर रहता है" और कहीं और नहीं।.
#एक बिना आवश्यकता के [[दिराक माप]] <math>\delta_p</math> वहाँ किसी बिंदु <math>p \in \Reals</math> पर होता है। फिर भी, बौद्धिकता सुझाव देती है कि माप <math>\delta_p</math> केवल बिंदु <math>p</math> पर रहता है" और कहीं और नहीं।.


Line 23: Line 23:
==परिभाषा==
==परिभाषा==


यदि <math>(X, T)</math> एक [[टोपोलॉजिकल समूह|सांस्थानिक समूह]] हो, तो <math>B(T)</math> <math>X</math> पर [[बोरेल संघ|बोरेल σ-संघ]] का प्रतिनिधित्व करता है, अर्थात् <math>X</math> पर सभी खुले समूह <math>U \in T</math> को सम्मिलित करने वाले सबसे छोटा σ-संघ है। <math>\mu</math> <math>(X, B(T))</math> पर एक माप हो। तब <math>\mu</math> का '''समर्थन''' निम्न रूप में परिभाषित होता है:
यदि <math>(X, T)</math> एक [[टोपोलॉजिकल समूह|सांस्थानिक समूह]] हो, तो <math>B(T)</math> <math>X</math> पर [[बोरेल संघ|बोरेल σ-संघ]] का प्रतिनिधित्व करता है, अर्थात् <math>X</math> पर सभी विवृत्त समूह <math>U \in T</math> को सम्मिलित करने वाले सबसे छोटा σ-संघ है। <math>\mu</math> <math>(X, B(T))</math> पर एक माप हो। तब <math>\mu</math> का '''समर्थन''' निम्न रूप में परिभाषित होता है:


<math display=block>\operatorname{supp} (\mu) := {x \in X \mid \forall N_x \in T \colon (x \in N_x \Rightarrow \mu (N_x) > 0)}.</math>
<math display=block>\operatorname{supp} (\mu) := {x \in X \mid \forall N_x \in T \colon (x \in N_x \Rightarrow \mu (N_x) > 0)}.</math>
Line 29: Line 29:
कुछ लेखक इस समुच्चय का आवरण लेने को प्राथमिकता देते हैं। यद्यपि, यह आवश्यक नहीं है: नीचे "गुण" देखें।
कुछ लेखक इस समुच्चय का आवरण लेने को प्राथमिकता देते हैं। यद्यपि, यह आवश्यक नहीं है: नीचे "गुण" देखें।


समर्थन की एक समकक्ष परिभाषा उन सभी <math>C \in B(T)</math> के रूप में है, जहां प्रत्येक खुले समूह जो <math>C</math> के गैर-रिक्त छिद्र के साथ संबंध रखता है, उसका माप धनात्मक होता है। अर्थात् यह सबसे बड़ा <math>C</math> है जिसके लिए यह प्राथमिकता होती है:
समर्थन की एक समकक्ष परिभाषा उन सभी <math>C \in B(T)</math> के रूप में है, जहां प्रत्येक विवृत्त समूह जो <math>C</math> के गैर-रिक्त छिद्र के साथ संबंध रखता है, उसका माप धनात्मक होता है। अर्थात् यह सबसे बड़ा <math>C</math> है जिसके लिए यह प्राथमिकता होती है:


<math display=block>(\forall U \in T)(U \cap C \neq \varnothing \implies \mu (U \cap C) > 0).</math>
<math display=block>(\forall U \in T)(U \cap C \neq \varnothing \implies \mu (U \cap C) > 0).</math>
Line 59: Line 59:




यदि <math>\mu</math> <math>X</math> पर एक माप है और यह पूर्णतः धनात्मक है, तो <math>\operatorname{supp}(\mu) = X</math> होता है। यदि <math>\mu</math> पूर्णतः धनात्मक है और <math>x \in X</math> विशेष नहीं है, तो कोई भी खुला प्रतिवेश का विस्तार धनात्मक माप होता है; इसलिए, <math>x \in \operatorname{supp}(\mu)</math> होता है, इसलिए <math>\operatorname{supp}(\mu) = X</math> होता है।
यदि <math>\mu</math> <math>X</math> पर एक माप है और यह पूर्णतः धनात्मक है, तो <math>\operatorname{supp}(\mu) = X</math> होता है। यदि <math>\mu</math> पूर्णतः धनात्मक है और <math>x \in X</math> विशेष नहीं है, तो कोई भी विवृत्त प्रतिवेश का विस्तार धनात्मक माप होता है; इसलिए, <math>x \in \operatorname{supp}(\mu)</math> होता है, इसलिए <math>\operatorname{supp}(\mu) = X</math> होता है।


पुनः, यदि <math>\operatorname{supp}(\mu) = X</math> है, तो हर गैर-रिक्त खुला समुच्चय जो कि इसके आंतरिक समुच्चय के एक बिंदु का खुला प्रतिवेश होता है, जो समर्थन का एक बिंदु धनात्मक माप होता है; इसलिए, <math>\mu</math> पूर्णतः धनात्मक होता है।
पुनः, यदि <math>\operatorname{supp}(\mu) = X</math> है, तो हर गैर-रिक्त विवृत्त समुच्चय जो कि इसके आंतरिक समुच्चय के एक बिंदु का विवृत्त प्रतिवेश होता है, जो समर्थन का एक बिंदु धनात्मक माप होता है; इसलिए, <math>\mu</math> पूर्णतः धनात्मक होता है।


माप का समर्थन <math>X</math> में [[Closed set|बंद]] होता है, क्योंकि इसका पूरक माप 0 के खुले समुच्चय का संयोग होता है।
माप का समर्थन <math>X</math> में [[Closed set|संवृत्त]] होता है, क्योंकि इसका पूरक माप 0 के विवृत्त समुच्चय का संयोग होता है।


सामान्यतः एक शून्य माप का समर्थन रिक्त हो सकता है: नीचे दिए गए उदाहरणों को देखें। यद्यपि, यदि <math>X</math> एक [[हाउसडॉरफ समूह]] है और <math>\mu</math> एक [[रैडॉन माप]] है, तो समर्थन के बाहर एक बोरेल समुच्चय <math>A</math> का माप शून्य होता है।
सामान्यतः एक शून्य माप का समर्थन रिक्त हो सकता है: नीचे दिए गए उदाहरणों को देखें। यद्यपि, यदि <math>X</math> एक [[हाउसडॉरफ समूह]] है और <math>\mu</math> एक [[रैडॉन माप]] है, तो समर्थन के बाहर एक बोरेल समुच्चय <math>A</math> का माप शून्य होता है।


<math display="block">A \subseteq X \setminus \operatorname{supp} (\mu) \implies \mu (A) = 0.</math>
<math display="block">A \subseteq X \setminus \operatorname{supp} (\mu) \implies \mu (A) = 0.</math>
यदि <math>A</math> खुला है, तो यह कथन सत्य है, परंतु  सामान्यतः यह सत्य नहीं है: अगर कोई ऐसा बिंदु <math>x \in \operatorname{supp}(\mu)</math> उपस्थित है जिसके लिए <math>\mu({x}) = 0</math> होता है तो यह सत्य नहीं होता है। इसलिए, समर्थन के बाहर "समान्य रूप से अंशिक" ढंग से कार्य करने की आवश्यकता नहीं होती है: किसी भी [[मापयोगी संख्या]] <math>f : X \to \Reals</math> या <math>\Complex,</math> के लिए,
यदि <math>A</math> विवृत्त है, तो यह कथन सत्य है, परंतु  सामान्यतः यह सत्य नहीं है: अगर कोई ऐसा बिंदु <math>x \in \operatorname{supp}(\mu)</math> उपस्थित है जिसके लिए <math>\mu({x}) = 0</math> होता है तो यह सत्य नहीं होता है। इसलिए, समर्थन के बाहर "समान्य रूप से अंशिक" ढंग से कार्य करने की आवश्यकता नहीं होती है: किसी भी [[मापयोगी संख्या]] <math>f : X \to \Reals</math> या <math>\Complex,</math> के लिए,
<math display="block">\int_X f(x) , \mathrm{d} \mu (x) = \int_{\operatorname{supp} (\mu)} f(x) , \mathrm{d} \mu (x).</math>
<math display="block">\int_X f(x) , \mathrm{d} \mu (x) = \int_{\operatorname{supp} (\mu)} f(x) , \mathrm{d} \mu (x).</math>
माप का समर्थन और हिलबर्ट स्थान पर स्व-संयुक्त रूप में एक स्व-प्रतिबिम्बी रैखिक संचालक के विस्तार की अवधारणा गहरायी से संबंधित होती है। वास्तव में, यदि <math>\mu</math> एक पंक्ति पर एक [[नियमित बोरेल माप]] है, तो गुणन संचालक  <math>(Af)(x) = xf(x)</math> अपने प्राकृतिक डोमेन पर स्व-संयुक्त है
माप का समर्थन और हिलबर्ट स्थान पर स्व-संयुक्त रूप में एक स्व-प्रतिबिम्बी रैखिक संचालक के विस्तार की अवधारणा गहरायी से संबंधित होती है। वास्तव में, यदि <math>\mu</math> एक पंक्ति पर एक [[नियमित बोरेल माप]] है, तो गुणन संचालक  <math>(Af)(x) = xf(x)</math> अपने प्राकृतिक डोमेन पर स्व-संयुक्त है
Line 88: Line 88:
===लेब्सग माप===
===लेब्सग माप===


यदि हम लेबेस्ग माप <math>\lambda</math> को यदि भारी का माप लेते हैं, तो हम व्यक्तिगत बिंदु <math>x \in \Reals</math> पर विचार कर सकते हैं। पुनः किसी भी खुले प्रतिवेश <math>N_x</math> का, <math>x</math> का एक खुला अवधि <math>(x - \epsilon, x + \epsilon)</math> का भी होना चाहिए जहां <math>\epsilon > 0</math> है। इस अवधि का लेबेस्ग माप <math>2 \epsilon > 0</math> होता है, इसलिए <math>\lambda(N_x) \geq 2 \epsilon > 0</math> होता है। क्योंकि <math>x \in \Reals</math> विचार्य है, इसलिए <math>\operatorname{supp}(\lambda) = \Reals</math> होता है।
यदि हम लेबेस्ग माप <math>\lambda</math> को यदि भारी का माप लेते हैं, तो हम व्यक्तिगत बिंदु <math>x \in \Reals</math> पर विचार कर सकते हैं। पुनः किसी भी विवृत्त      प्रतिवेश <math>N_x</math> का, <math>x</math> का एक विवृत्त अवधि <math>(x - \epsilon, x + \epsilon)</math> का भी होना चाहिए जहां <math>\epsilon > 0</math> है। इस अवधि का लेबेस्ग माप <math>2 \epsilon > 0</math> होता है, इसलिए <math>\lambda(N_x) \geq 2 \epsilon > 0</math> होता है। क्योंकि <math>x \in \Reals</math> विचार्य है, इसलिए <math>\operatorname{supp}(\lambda) = \Reals</math> होता है।




Line 95: Line 95:
यदि हम दिए गए डिराक माप <math>\delta_p</math> के स्थितयो को देखें, तो हम <math>x \in \Reals</math> लेते हैं और दो स्थितियों का विचार करते हैं:
यदि हम दिए गए डिराक माप <math>\delta_p</math> के स्थितयो को देखें, तो हम <math>x \in \Reals</math> लेते हैं और दो स्थितियों का विचार करते हैं:


यदि <math>x = p</math> है, तो प्रत्येक खुले प्रतिवेश <math>N_x</math> में <math>p</math> सम्मिलित होता है, इसलिए <math>\delta_p(N_x) = 1 > 0</math> होता है।
यदि <math>x = p</math> है, तो प्रत्येक विवृत्त प्रतिवेश <math>N_x</math> में <math>p</math> सम्मिलित होता है, इसलिए <math>\delta_p(N_x) = 1 > 0</math> होता है।


दूसरी ओर, यदि <math>x \neq p</math> है, तो ऐसा कम से कम एक छोटा खुला गोला <math>B</math> उपस्थित होता है जिसमें <math>p</math> सम्मिलित नहीं होता है, इसलिए <math>\delta_p(B) = 0</math> होता है।  
दूसरी ओर, यदि <math>x \neq p</math> है, तो ऐसा कम से कम एक छोटा विवृत्त शून्य <math>B</math> उपस्थित होता है जिसमें <math>p</math> सम्मिलित नहीं होता है, इसलिए <math>\delta_p(B) = 0</math> होता है।  


हम निष्कर्ष निकालते हैं कि <math>\operatorname{supp}(\delta_p)</math> एकल समुच्चय  <math>{p}</math> के [[Closure (topology)|आवरण]] के बराबर होता है, जो <math>{p}</math> स्वयं है।
हम निष्कर्ष निकालते हैं कि <math>\operatorname{supp}(\delta_p)</math> एकल समुच्चय  <math>{p}</math> के [[Closure (topology)|आवरण]] के बराबर होता है, जो <math>{p}</math> स्वयं है।


वास्तव में, एक माप <math>\mu</math> जो एक बिंदु <math>p</math> के लिए डिराक माप <math>\delta_p</math>मात्र तब होता है जब <math>\mu</math> का समर्थन एकल समुच्चय  <math>{p}</math> होता है। इस प्रकार, तटस्थता माप वाली एकल माप तटस्थता माप के रूप में शून्य [[वेरियंस]] वाली अद्वितीय माप होती है।
वास्तव में, एक माप <math>\mu</math> जो एक बिंदु <math>p</math> के लिए डिराक माप <math>\delta_p</math>मात्र तब होता है जब <math>\mu</math> का समर्थन एकल समुच्चय  <math>{p}</math> होता है। इस प्रकार, तटस्थता माप वाली एकल माप तटस्थता माप के रूप में शून्य [[वेरियंस|प्रसरण]] वाली अद्वितीय माप होती है।


===एक समान वितरण===
===एक समान वितरण===
Line 107: Line 107:
वास्तविकता में, वास्तविक रेखा पर माप <math>\mu</math> का विचार करें <math>\Reals</math> जिसे निम्न रूप से परिभाषित किया गया है:
वास्तविकता में, वास्तविक रेखा पर माप <math>\mu</math> का विचार करें <math>\Reals</math> जिसे निम्न रूप से परिभाषित किया गया है:
<math display=block>\mu(A) := \lambda(A \cap (0, 1))</math>
<math display=block>\mu(A) := \lambda(A \cap (0, 1))</math>
उदाहरण के रूप में, एक खुले अंतराल <math>(0, 1)</math>  पर एक समान मापक होती है डिरैक मापक उदाहरण की तरह, एक समर्थन के लिए एक समान तर्क दिखाता है कि <math>\operatorname{supp}(\mu) = [0, 1]</math> होता है। ध्यान दें कि सीमा बिंदु 0 और 1 समर्थन में होते हैं:: 0 (या 1) के बारे में एक खुले अंतराल का समुच्चय होता है,जो आवश्यकतानुसार 0 (या 1) को काटता है, और इसलिए सकारात्मक माप <math>\mu</math>-का होता है।
उदाहरण के रूप में, एक विवृत्त अंतराल <math>(0, 1)</math>  पर एक समान मापक होती है डिरैक मापक उदाहरण की तरह, एक समर्थन के लिए एक समान तर्क दिखाता है कि <math>\operatorname{supp}(\mu) = [0, 1]</math> होता है। ध्यान दें कि सीमा बिंदु 0 और 1 समर्थन में होते हैं:: 0 (या 1) के बारे में एक विवृत्त अंतराल का समुच्चय होता है,जो आवश्यकतानुसार 0 (या 1) को काटता है, और इसलिए सकारात्मक माप <math>\mu</math>-का होता है।


===एक गैर-तुच्छ माप जिसका समर्थन रिक्त है===
===एक गैर-तुच्छ माप जिसका समर्थन रिक्त है===


"खुले अंतरालों" द्वारा उत्पन्न संस्थानिक के साथ सभी गणनीय क्रमांकीय संख्याओं का अंतरिक्ष स्थानीय निर्मित है। इसमें स्थानिक घन और हौसदॉरफ स्थान है। "डिऊडोने माप" जो असीमित बंद संग्रह को समावेश करने वाले बोरेल समुच्चय को 1 का माप देता है और अन्य बोरेल समुच्चय को 0 का माप देता है, एक बोरेल संभावना माप है जिसका समर्थन रिक्त है।
"विवृत्त अंतरालों" द्वारा उत्पन्न संस्थानिक के साथ सभी गणनीय क्रमांकीय संख्याओं का समष्टि स्थानीय निर्मित है। इसमें स्थानिक घन और हौसदॉरफ स्थान है। "डिऊडोने माप" जो असीमित संवृत्त संग्रह को समावेश करने वाले बोरेल समुच्चय को 1 का माप देता है और अन्य बोरेल समुच्चय को 0 का माप देता है, एक बोरेल संभावना माप है जिसका समर्थन रिक्त है।


=== एक गैर-तुच्छ माप जिसका समर्थन शून्य है ===
=== एक गैर-तुच्छ माप जिसका समर्थन शून्य है ===

Revision as of 11:49, 12 July 2023

गणित में, एक माप के समर्थन का अर्थ होता है कि यह माप समष्टि में "प्रवेश करता है"। यह निर्धारित किया जाता है कि यह सबसे बड़ा (संवृत्त) उपसमूह है जिसके लिए प्रत्येक बिंदु के प्रत्येक विवृत्त प्रतिवेश का माप धनात्मक होता है।

प्रेरणा

गैर-नकारात्मक माप एक मापनीय समष्टि पर वास्तव में एक फलन होता है। इसलिए, सामान्य रूप से समर्थन की मान्यता के दृष्टिकोण से, माप का समर्थन का उपसमूह होता है:

यहां अद्यावधिक चिह्न समूह आवरण को दर्शाता है। यद्यपि, यह परिभाषा कुछ सीमा तक असंतुष्टिप्रद है: हम आवरण की धारणा का उपयोग करते हैं, परंतु हमारे पास पर भी एक सांस्थानिक नहीं है। हमारी वास्तविक आवश्यकता है कि हम जानें कि समष्टि में माप यहां गैर-शून्य होता है। दो उदाहरणों पर विचार करें:लेबेस्ग माप वास्तविक रेखा पर है। स्पष्ट है कि पूरी वास्तविक रेखा पर "रहता है"।

  1. एक बिना आवश्यकता के दिराक माप वहाँ किसी बिंदु पर होता है। फिर भी, बौद्धिकता सुझाव देती है कि माप केवल बिंदु पर रहता है" और कहीं और नहीं।.

इन दो उदाहरणों के प्रकाश में, हम अगले भाग में दी गई परिभाषाओं के पक्ष में निम्नलिखित उम्मीदवार परिभाषाओं को अस्वीकार कर सकते हैं: हम शून्य होने वाले बिंदुओं को हटा सकते हैं, और समर्थन को शेष भाग ले सकते हैं। यह दिराक माप के लिए काम कर सकता है, परंतु यह निश्चित रूप से लेबेस्ग माप के लिए काम नहीं करेगा, क्योंकि किसी एकल संख्या का लेबेस्ग माप शून्य होता है, इस परिभाषा से हमें मात्र समर्थन मिल जाएगा।. मापों की पूर्णतः धनात्मकता की अवधारणा के साथ तुलना करके, हम समर्थन को उन सभी बिंदुओं का समुच्चय ले सकते हैं जिनके पास धनात्मक माप वाले एक प्रतिवेशी या इसका आवरण होता है।

यह भी बहुत ही सरल होता है: सभी बिंदुओं के लिए लेते हुए, इससे शून्य माप के अतिरिक्त प्रत्येक माप का समर्थन पूरी बन जाता है । यद्यपि, स्थानीय पूर्णतया सकारात्मकता का विचार एक व्यावहारिक परिभाषा से बहुत दूर नहीं है।

परिभाषा

यदि एक सांस्थानिक समूह हो, तो पर बोरेल σ-संघ का प्रतिनिधित्व करता है, अर्थात् पर सभी विवृत्त समूह को सम्मिलित करने वाले सबसे छोटा σ-संघ है। पर एक माप हो। तब का समर्थन निम्न रूप में परिभाषित होता है:

कुछ लेखक इस समुच्चय का आवरण लेने को प्राथमिकता देते हैं। यद्यपि, यह आवश्यक नहीं है: नीचे "गुण" देखें।

समर्थन की एक समकक्ष परिभाषा उन सभी के रूप में है, जहां प्रत्येक विवृत्त समूह जो के गैर-रिक्त छिद्र के साथ संबंध रखता है, उसका माप धनात्मक होता है। अर्थात् यह सबसे बड़ा है जिसके लिए यह प्राथमिकता होती है:


सांकेतिक एवं जटिल उपाय

इस परिभाषा को धनात्मक और आवेशित मापों के लिए विस्तारित किया जा सकता है।

यदि एक आवेशित माप है। हान विभाजन का सिद्धांत का उपयोग करके इसे निम्न रूप में लिखें:

, यहां दोनों गैर-नकारात्मक माप हैं। तब का समर्थन निम्न रूप में परिभाषित होता है:
. इसी तरह, यदि एक संयुक्त माप है, तो का समर्थन उसके वास्तविक और काल्पनिक भागों के समर्थनों का संयोजन होता है।

गुण

का सत्य होता है।


यदि पर एक माप है और यह पूर्णतः धनात्मक है, तो होता है। यदि पूर्णतः धनात्मक है और विशेष नहीं है, तो कोई भी विवृत्त प्रतिवेश का विस्तार धनात्मक माप होता है; इसलिए, होता है, इसलिए होता है।

पुनः, यदि है, तो हर गैर-रिक्त विवृत्त समुच्चय जो कि इसके आंतरिक समुच्चय के एक बिंदु का विवृत्त प्रतिवेश होता है, जो समर्थन का एक बिंदु धनात्मक माप होता है; इसलिए, पूर्णतः धनात्मक होता है।

माप का समर्थन में संवृत्त होता है, क्योंकि इसका पूरक माप 0 के विवृत्त समुच्चय का संयोग होता है।

सामान्यतः एक शून्य माप का समर्थन रिक्त हो सकता है: नीचे दिए गए उदाहरणों को देखें। यद्यपि, यदि एक हाउसडॉरफ समूह है और एक रैडॉन माप है, तो समर्थन के बाहर एक बोरेल समुच्चय का माप शून्य होता है।

यदि विवृत्त है, तो यह कथन सत्य है, परंतु सामान्यतः यह सत्य नहीं है: अगर कोई ऐसा बिंदु उपस्थित है जिसके लिए होता है तो यह सत्य नहीं होता है। इसलिए, समर्थन के बाहर "समान्य रूप से अंशिक" ढंग से कार्य करने की आवश्यकता नहीं होती है: किसी भी मापयोगी संख्या या के लिए,
माप का समर्थन और हिलबर्ट स्थान पर स्व-संयुक्त रूप में एक स्व-प्रतिबिम्बी रैखिक संचालक के विस्तार की अवधारणा गहरायी से संबंधित होती है। वास्तव में, यदि एक पंक्ति पर एक नियमित बोरेल माप है, तो गुणन संचालक अपने प्राकृतिक डोमेन पर स्व-संयुक्त है
और इसका विस्तार सीधे-सीधे पहचान-सीमा के साथ मेल खाता है, जो निःसंदेश का समर्थन करता है।[1]

उदाहरण

लेब्सग माप

यदि हम लेबेस्ग माप को यदि भारी का माप लेते हैं, तो हम व्यक्तिगत बिंदु पर विचार कर सकते हैं। पुनः किसी भी विवृत्त प्रतिवेश का, का एक विवृत्त अवधि का भी होना चाहिए जहां है। इस अवधि का लेबेस्ग माप होता है, इसलिए होता है। क्योंकि विचार्य है, इसलिए होता है।


डिराक माप

यदि हम दिए गए डिराक माप के स्थितयो को देखें, तो हम लेते हैं और दो स्थितियों का विचार करते हैं:

यदि है, तो प्रत्येक विवृत्त प्रतिवेश में सम्मिलित होता है, इसलिए होता है।

दूसरी ओर, यदि है, तो ऐसा कम से कम एक छोटा विवृत्त शून्य उपस्थित होता है जिसमें सम्मिलित नहीं होता है, इसलिए होता है।

हम निष्कर्ष निकालते हैं कि एकल समुच्चय के आवरण के बराबर होता है, जो स्वयं है।

वास्तव में, एक माप जो एक बिंदु के लिए डिराक माप मात्र तब होता है जब का समर्थन एकल समुच्चय होता है। इस प्रकार, तटस्थता माप वाली एकल माप तटस्थता माप के रूप में शून्य प्रसरण वाली अद्वितीय माप होती है।

एक समान वितरण

वास्तविकता में, वास्तविक रेखा पर माप का विचार करें जिसे निम्न रूप से परिभाषित किया गया है:

उदाहरण के रूप में, एक विवृत्त अंतराल पर एक समान मापक होती है डिरैक मापक उदाहरण की तरह, एक समर्थन के लिए एक समान तर्क दिखाता है कि होता है। ध्यान दें कि सीमा बिंदु 0 और 1 समर्थन में होते हैं:: 0 (या 1) के बारे में एक विवृत्त अंतराल का समुच्चय होता है,जो आवश्यकतानुसार 0 (या 1) को काटता है, और इसलिए सकारात्मक माप -का होता है।

एक गैर-तुच्छ माप जिसका समर्थन रिक्त है

"विवृत्त अंतरालों" द्वारा उत्पन्न संस्थानिक के साथ सभी गणनीय क्रमांकीय संख्याओं का समष्टि स्थानीय निर्मित है। इसमें स्थानिक घन और हौसदॉरफ स्थान है। "डिऊडोने माप" जो असीमित संवृत्त संग्रह को समावेश करने वाले बोरेल समुच्चय को 1 का माप देता है और अन्य बोरेल समुच्चय को 0 का माप देता है, एक बोरेल संभावना माप है जिसका समर्थन रिक्त है।

एक गैर-तुच्छ माप जिसका समर्थन शून्य है

एक संकीर्ण हौसदॉरफ स्थान पर गणित माप का समर्थन सदैव रिक्त नहीं होता है, परंतु यह माप का हो सकता है। इसका एक उदाहरण पिछले उदाहरण में पहले गणनीय क्रमसूची को जोड़कर दिया जाता है: माप का समर्थन एकल बिंदु होता है, जिसका माप होता है।

संदर्भ

  1. Mathematical methods in Quantum Mechanics with applications to Schrödinger Operators
  • Ambrosio, L., Gigli, N. & Savaré, G. (2005). Gradient Flows in Metric Spaces and in the Space of Probability Measures. ETH Zürich, Birkhäuser Verlag, Basel. ISBN 3-7643-2428-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Parthasarathy, K. R. (2005). Probability measures on metric spaces. AMS Chelsea Publishing, Providence, RI. p. xii+276. ISBN 0-8218-3889-X. MR2169627 (See chapter 2, section 2.)
  • Teschl, Gerald (2009). Mathematical methods in Quantum Mechanics with applications to Schrödinger Operators. AMS.(See chapter 3, section 2)