समूह परिवार: Difference between revisions

From Vigyanwiki
No edit summary
Line 42: Line 42:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 06/07/2023]]
[[Category:Created On 06/07/2023]]
[[Category:Vigyan Ready]]

Revision as of 17:21, 14 July 2023

संभाव्यता सिद्धांत में, विशेष रूप से उस क्षेत्र का उपयोग सांख्यिकी में किया जाता है, संभाव्यता वितरण का समूह सदस्य ऐसा सदस्य है जो निश्चित वितरण के साथ यादृच्छिक चर को परिवर्तनों के उपयुक्त सदस्य जैसे स्थान-पैमाने सदस्य, या अन्यथा सदस्य के अंतर्गत प्राप्त किया जाता है। समूह द्वारा संभाव्यता वितरण पर क्रिया की जाती है। [1]

समूह सदस्य के रूप में वितरण के विशेष सदस्य पर विचार करने से, सांख्यिकी सिद्धांत में, सहायक सांख्यिकी की पहचान हो सकती है।[2]

समूह सदस्यों के प्रकार

निश्चित वितरण के साथ यादृच्छिक चर को कुछ उपयुक्त परिवर्तन (फलन) के अंतर्गत समूह सदस्य उत्पन्न किया जा सकता है।[1]विभिन्न प्रकार के समूह सदस्य इस प्रकार हैं:

स्थान सदस्य

यह सदस्य यादृच्छिक चर में स्थिरांक जोड़कर प्राप्त किया जाता है। मान लीजिये यादृच्छिक चर हो और स्थिरांक है। तब है:

निश्चित वितरण के लिए, जैसे से भिन्न होता है और , जो वितरण प्राप्त करते हैं वह स्थान सदस्य का निर्माण करते हैं।

सदिश सदस्य

यह सदस्य यादृच्छिक चर को स्थिरांक से गुणा करके प्राप्त किया जाता है। मान लीजिये यादृच्छिक चर हो और स्थिरांक है तब है:

स्थान - सदिश सदस्य यह सदस्य यादृच्छिक चर को स्थिरांक से गुणा करके और फिर उसमें कुछ अन्य स्थिरांक जोड़कर प्राप्त किया जाता है। मान लीजिये यादृच्छिक चर हो, और स्थिरांक हो, तब है,

ध्यान दें कि यह महत्वपूर्ण है कि और निम्नलिखित अनुभाग में उल्लिखित गुणों को संतुष्ट करने के लिए है।

परिवर्तनों के गुण

यादृच्छिक चर पर प्रारम्भ परिवर्तन (फलन) को निम्नलिखित गुणों को संतुष्ट करना चाहिए।।[1]

  • रचना के अंतर्गत समापन
  • व्युत्क्रमण के अंतर्गत विवृत होना

संदर्भ

  1. 1.0 1.1 1.2 Lehmann, E. L.; George Casella (1998). बिंदु अनुमान का सिद्धांत (2nd ed.). Springer. ISBN 0-387-98502-6.
  2. Cox, D.R. (2006) Principles of Statistical Inference, CUP. ISBN 0-521-68567-2 (Section 4.4.2)