डेटा संचालन: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Capability that enables an organization to ensure high data quality}} | {{Short description|Capability that enables an organization to ensure high data quality}} | ||
{{Governance}} | {{Governance}} | ||
'''सामग्री संचालन''' वह शब्द है जिसका उपयोग विश्लेषण के दोनों स्तरों पर किया जाता है। इस प्रकार यह पूर्व राजनीतिक अवधारणा होती है और अंतरराष्ट्रीय संबंधों और इंटरनेट प्र[[शासन]] का भाग होती है, अतः उत्तरार्द्ध [[डेटा प्रबंधन]] अवधारणा है और कॉर्पोरेट डेटा प्रशासन का भाग होती है। | |||
== मैक्रो स्तर == | == मैक्रो स्तर == | ||
वृहद स्तर पर, | वृहद स्तर पर, सामग्री संचालन का तात्पर्य देशों द्वारा सीमा पार डेटा प्रवाह के संचालन से होता है, और इसलिए इसे अधिक त्रुटिहीन रूप से अंतर्राष्ट्रीय सामग्री संचालन कहा जाता है। यह नये क्षेत्र में विभिन्न प्रकार के डेटा को नियंत्रित करने वाले मानदंड, सिद्धांत और नियम सम्मिलित होते हैं।<ref>{{cite web |url=https://datagovhub.elliott.gwu.edu/faq/ |title=सामान्य प्रश्न|work=Digital Trade and Data Governance Hub |access-date=2023-02-20}}</ref> | ||
<ref>{{cite web |url=https://datagovhub.elliott.gwu.edu/faq/ |title=सामान्य प्रश्न|work=Digital Trade and Data Governance Hub |access-date=2023-02-20}}</ref> | |||
== सूक्ष्म स्तर == | == सूक्ष्म स्तर == | ||
यहां फोकस व्यक्तिगत कंपनी पर है। यहां | यहां फोकस व्यक्तिगत कंपनी पर है। यहां सामग्री संचालन क्षमता से संबंधित डेटा प्रबंधन अवधारणा है जो किसी संगठन को यह सुनिश्चित करने में सक्षम बनाती है कि डेटा के पूरे जीवनचक्र में उच्च डेटा गुणवत्ता उपस्तिथ है, और डेटा नियंत्रण प्रयुक्त किए जाते हैं जो व्यावसायिक उद्देश्यों का समर्थन करते हैं। सामग्री संचालन के प्रमुख फोकस क्षेत्रों में उपलब्धता, प्रयोज्यता, स्थिरता, सम्मिलित हैं।<ref>{{cite web |url=https://www.techtarget.com/searchdatamanagement/definition/data-governance |title=What is data governance and why does it matter? |website=TechTarget.com |access-date=2023-02-20}}</ref> डेटा अखंडता और डेटा सुरक्षा, मानक अनुपालन और पूरे उद्यम में प्रभावी डेटा प्रबंधन सुनिश्चित करने के लिए प्रक्रियाएं स्थापित करना सम्मिलित है जैसे कि खराब डेटा गुणवत्ता के प्रतिकूल प्रभावों के लिए उत्तरदेही और यह सुनिश्चित करना कि उद्यम के पास जो डेटा है उसका उपयोग पूरे संगठन द्वारा किया जा सकता है। | ||
[[डेटा प्रबंधक]] ऐसी भूमिका है जो यह सुनिश्चित करती है कि | [[डेटा प्रबंधक]] ऐसी भूमिका है जो यह सुनिश्चित करती है कि सामग्री संचालन प्रक्रियाओं का पालन किया जाए और दिशानिर्देशों को प्रयुक्त किया जाए, साथ ही सामग्री संचालन प्रक्रियाओं में सुधार की पक्षसमर्थन की जाए। | ||
सामग्री संचालन में व्यावसायिक उद्यम में किसी संगठन के डेटा की सुसंगत और उचित हैंडलिंग बनाने के लिए आवश्यक लोगों, प्रक्रियाओं और सूचना प्रौद्योगिकी को सम्मिलित किया गया है। यह सभी डेटा प्रबंधन प्रथाओं को आवश्यक आधार, रणनीति और संरचना प्रदान करता है जिससे कि यह सुनिश्चित किया जा सके कि डेटा को संपत्ति के रूप में प्रबंधित किया जाता है और सार्थक जानकारी में बदल दिया जाता है।<ref>{{cite news |url=https://www.lightsondata.com/what-is-data-governance/ |title=What is Data Governance? A complete guide |work=LightsOnData |first=George |last=Firican |access-date=2023-02-20}}</ref> लक्ष्यों को उद्यम के सभी स्तरों पर परिभाषित किया जा सकता है और ऐसा करने से उन लोगों द्वारा प्रक्रियाओं को स्वीकार करने में सहायता मिल सकती है जो उनका उपयोग करेंगे। कुछ लक्ष्यों में सम्मिलित हैं: | |||
* निर्णय लेने में निरंतरता और आत्मविश्वास बढ़ाना | * निर्णय लेने में निरंतरता और आत्मविश्वास बढ़ाना | ||
Line 23: | Line 22: | ||
* सभी लाभों को स्वीकार करें और धारण करें | * सभी लाभों को स्वीकार करें और धारण करें | ||
इन लक्ष्यों को | इन लक्ष्यों को सामग्री संचालन कार्यक्रमों के कार्यान्वयन, या [[परिवर्तन प्रबंधन]] विधियाें का उपयोग करने वाली पहलों द्वारा साकार किया जाता है। | ||
जब कंपनियां अपने डेटा पर नियंत्रण पाने की इच्छा रखती हैं या इसकी आवश्यकता होती है, तब वह अपने लोगों को सशक्त बनाती हैं, प्रक्रियाएं स्थापित करती हैं और ऐसा करने के लिए प्रौद्योगिकी से सहायता लेती हैं।<ref name="sarsfield">{{cite book |last=Sarsfield |first=Steve |year=2009 |title=डेटा गवर्नेंस अनिवार्यता|isbn=9781849281102 |publisher=IT Governance Publishing}}</ref> | जब कंपनियां अपने डेटा पर नियंत्रण पाने की इच्छा रखती हैं या इसकी आवश्यकता होती है, तब वह अपने लोगों को सशक्त बनाती हैं, प्रक्रियाएं स्थापित करती हैं और ऐसा करने के लिए प्रौद्योगिकी से सहायता लेती हैं।<ref name="sarsfield">{{cite book |last=Sarsfield |first=Steve |year=2009 |title=डेटा गवर्नेंस अनिवार्यता|isbn=9781849281102 |publisher=IT Governance Publishing}}</ref> | ||
== | ==सामग्री संचालन ड्राइवर== | ||
जबकि डेटा प्रशासन पहल को डेटा गुणवत्ता में सुधार की इच्छा से संचालित किया जा सकता है, वह अधिकांशतः कॉर्पोरेट शीर्षक वरिष्ठ प्रबंधन|सी-स्तर के नेताओं द्वारा बाहरी नियमों का उत्तर देने से प्रेरित होते हैं। सीआईओ वाटरकूलर समुदाय द्वारा हाल ही में की गई सूची में, 54% ने कहा कि मुख्य चालक प्रक्रियाओं में दक्षता थी; 39% - नियामक आवश्यकताएँ; और केवल 7% ग्राहक सेवा।<ref>{{cite web |url=https://www.ciowatercooler.co.uk/the-data-governance-report-2017-your-copy/ |title=The Data Governance Report 2017 – Your Copy |website=CIOWaterCooler.co.uk |access-date=2023-02-20 |first=Daniel |last=Warburton |date=2017-03-15}}</ref> इन विनियमों के उदाहरणों में सर्बनेस-ऑक्सले अधिनियम, [[बेसल I]], बेसल II, स्वास्थ्य बीमा पोर्टेबिलिटी और उत्तरदेही अधिनियम, [[सामान्य डेटा संरक्षण विनियमन]], अच्छा विनिर्माण अभ्यास, सम्मिलित हैं।<ref>{{cite web |url=https://www.ecfr.gov/current/title-21 |title=eCFR — Code of Federal Regulations |website=eCFR.gov |access-date=2023-02-20}}</ref> और अनेक डेटा गोपनीयता नियम। इन विनियमों का अनुपालन प्राप्त करने के लिए, व्यावसायिक प्रक्रियाओं और नियंत्रणों को इन विनियमों के अधीन डेटा को नियंत्रित करने के लिए औपचारिक प्रबंधन प्रक्रियाओं की आवश्यकता होती है।<ref>{{cite web |url=https://www.rimes.com/rimes-data-governance-handbook |url-status=dead |archive-url=https://web.archive.org/web/20160305023232/http://www.rimes.com/rimes-data-governance-handbook |archive-date=2016-03-05 |title=रिम्स डेटा गवर्नेंस हैंडबुक|website=RIMES |date=2013-10-16 |access-date=2023-02-20}}</ref> सफल कार्यक्रम पर्यवेक्षी और कार्यकारी नेतृत्व दोनों के लिए सार्थक ड्राइवरों की पहचान करते हैं। | जबकि डेटा प्रशासन पहल को डेटा गुणवत्ता में सुधार की इच्छा से संचालित किया जा सकता है, वह अधिकांशतः कॉर्पोरेट शीर्षक वरिष्ठ प्रबंधन|सी-स्तर के नेताओं द्वारा बाहरी नियमों का उत्तर देने से प्रेरित होते हैं। सीआईओ वाटरकूलर समुदाय द्वारा हाल ही में की गई सूची में, 54% ने कहा कि मुख्य चालक प्रक्रियाओं में दक्षता थी; 39% - नियामक आवश्यकताएँ; और केवल 7% ग्राहक सेवा।<ref>{{cite web |url=https://www.ciowatercooler.co.uk/the-data-governance-report-2017-your-copy/ |title=The Data Governance Report 2017 – Your Copy |website=CIOWaterCooler.co.uk |access-date=2023-02-20 |first=Daniel |last=Warburton |date=2017-03-15}}</ref> इन विनियमों के उदाहरणों में सर्बनेस-ऑक्सले अधिनियम, [[बेसल I]], बेसल II, स्वास्थ्य बीमा पोर्टेबिलिटी और उत्तरदेही अधिनियम, [[सामान्य डेटा संरक्षण विनियमन]], अच्छा विनिर्माण अभ्यास, सम्मिलित हैं।<ref>{{cite web |url=https://www.ecfr.gov/current/title-21 |title=eCFR — Code of Federal Regulations |website=eCFR.gov |access-date=2023-02-20}}</ref> और अनेक डेटा गोपनीयता नियम। इन विनियमों का अनुपालन प्राप्त करने के लिए, व्यावसायिक प्रक्रियाओं और नियंत्रणों को इन विनियमों के अधीन डेटा को नियंत्रित करने के लिए औपचारिक प्रबंधन प्रक्रियाओं की आवश्यकता होती है।<ref>{{cite web |url=https://www.rimes.com/rimes-data-governance-handbook |url-status=dead |archive-url=https://web.archive.org/web/20160305023232/http://www.rimes.com/rimes-data-governance-handbook |archive-date=2016-03-05 |title=रिम्स डेटा गवर्नेंस हैंडबुक|website=RIMES |date=2013-10-16 |access-date=2023-02-20}}</ref> सफल कार्यक्रम पर्यवेक्षी और कार्यकारी नेतृत्व दोनों के लिए सार्थक ड्राइवरों की पहचान करते हैं। | ||
बाहरी विनियमों के बीच सामान्य विषय कठिन परिस्थिति प्रबंधन की आवश्यकता पर केन्द्रित हैं। कठिन परिस्थिति वित्तीय गलतकथन ी, संवेदनशील डेटा का अनजाने में जारी होना या प्रमुख निर्णयों के लिए खराब डेटा गुणवत्ता हो सकते हैं। इन कठिन परिस्थितिों को प्रबंधित करने के तरीके भिन्न-भिन्न उद्योगों में भिन्न-भिन्न होते हैं। सामान्यतः संदर्भित सर्वोत्तम प्रथाओं और दिशानिर्देशों के उदाहरणों में [[COBIT|सीओबीआईटी]], आईएसओ/आईईसी 38500, और अन्य सम्मिलित हैं। विनियमों और मानकों का प्रसार डेटा प्रशासन कुशल ों के लिए चुनौतियां उत्पन्न करता है, खासकर जब अनेक नियम प्रबंधित किए जा रहे डेटा को ओवरलैप करते हैं। संगठन अधिकांशतः इन चुनौतियों से निपटने के लिए | बाहरी विनियमों के बीच सामान्य विषय कठिन परिस्थिति प्रबंधन की आवश्यकता पर केन्द्रित हैं। कठिन परिस्थिति वित्तीय गलतकथन ी, संवेदनशील डेटा का अनजाने में जारी होना या प्रमुख निर्णयों के लिए खराब डेटा गुणवत्ता हो सकते हैं। इन कठिन परिस्थितिों को प्रबंधित करने के तरीके भिन्न-भिन्न उद्योगों में भिन्न-भिन्न होते हैं। सामान्यतः संदर्भित सर्वोत्तम प्रथाओं और दिशानिर्देशों के उदाहरणों में [[COBIT|सीओबीआईटी]], आईएसओ/आईईसी 38500, और अन्य सम्मिलित हैं। विनियमों और मानकों का प्रसार डेटा प्रशासन कुशल ों के लिए चुनौतियां उत्पन्न करता है, खासकर जब अनेक नियम प्रबंधित किए जा रहे डेटा को ओवरलैप करते हैं। संगठन अधिकांशतः इन चुनौतियों से निपटने के लिए सामग्री संचालन पहल प्रारंभ करते हैं। | ||
== डेटा प्रशासन पहल (आयाम) == | == डेटा प्रशासन पहल (आयाम) == | ||
डेटा प्रशासन पहल डेटा की त्रुटिहीनता, पूर्णता, स्थिरता, समयबद्धता, वैधता और विशिष्टता के लिए जिम्मेदार टीम नियुक्त करके डेटा की गुणवत्ता में सुधार करती है।<ref>{{cite book |chapter=Data Profiling Technology of Data Governance Regarding Big Data: Review and Rethinking |title=सूचना प्रौद्योगिकी, नई पीढ़ी|volume=448 |pages=439–450 |first1=Wei |last1=Dai |first2=Isaac |last2=Wardlaw |doi=10.1007/978-3-319-32467-8_39 |series=Advances in Intelligent Systems and Computing |year=2016 |isbn=978-3-319-32466-1}}</ref> इस टीम में सामान्यतः कार्यकारी नेतृत्व, [[परियोजना प्रबंधन]], [[लाइन फ़ंक्शन|लाइन फलन]]|लाइन-ऑफ-बिजनेस मैनेजर और डेटा स्टीवर्ड सम्मिलित होते हैं। टीम सामान्यतः एंटरप्राइज़ डेटा को ट्रैक करने और सुधारने के लिए कुछ प्रकार की कार्यप्रणाली का उपयोग करती है, जैसे [[सिक्स सिग्मा]], और [[डेटा मैपिंग]], [[डेटा प्रोफाइलिंग]], सफाई और डेटा की निगरानी के लिए उपकरण। | डेटा प्रशासन पहल डेटा की त्रुटिहीनता, पूर्णता, स्थिरता, समयबद्धता, वैधता और विशिष्टता के लिए जिम्मेदार टीम नियुक्त करके डेटा की गुणवत्ता में सुधार करती है।<ref>{{cite book |chapter=Data Profiling Technology of Data Governance Regarding Big Data: Review and Rethinking |title=सूचना प्रौद्योगिकी, नई पीढ़ी|volume=448 |pages=439–450 |first1=Wei |last1=Dai |first2=Isaac |last2=Wardlaw |doi=10.1007/978-3-319-32467-8_39 |series=Advances in Intelligent Systems and Computing |year=2016 |isbn=978-3-319-32466-1}}</ref> इस टीम में सामान्यतः कार्यकारी नेतृत्व, [[परियोजना प्रबंधन]], [[लाइन फ़ंक्शन|लाइन फलन]]|लाइन-ऑफ-बिजनेस मैनेजर और डेटा स्टीवर्ड सम्मिलित होते हैं। टीम सामान्यतः एंटरप्राइज़ डेटा को ट्रैक करने और सुधारने के लिए कुछ प्रकार की कार्यप्रणाली का उपयोग करती है, जैसे [[सिक्स सिग्मा]], और [[डेटा मैपिंग]], [[डेटा प्रोफाइलिंग]], सफाई और डेटा की निगरानी के लिए उपकरण। | ||
सामग्री संचालन पहल का उद्देश्य अनेक उद्देश्यों को प्राप्त करना हो सकता है, जिसमें आंतरिक और बाहरी ग्राहकों (जैसे [[आपूर्ति श्रृंखला]] प्रबंधन) को उत्तम दृश्यता प्रदान करना, [[अनुपालन (विनियमन)]] का अनुपालन, तेजी से कंपनी के विकास या [[विलय और अधिग्रहण]] के पश्चात् संचालन में सुधार करना, या सहायता करना सम्मिलित है। भ्रम और त्रुटि को कम करके और उनके ज्ञान के सीमा को बढ़ाकर उद्यम ज्ञान श्रमिकों की दक्षता। अनेक सामग्री संचालन पहल विभागीय स्तर पर सूचना गुणवत्ता को ठीक करने के पिछले प्रयासों से भी प्रेरित हैं, जिससे असंगत और अनावश्यक डेटा गुणवत्ता प्रक्रियाएं होती हैं। अधिकांश बड़ी कंपनियों के पास अनेक एप्लिकेशन और डेटाबेस होते हैं जो आसानी से जानकारी साझा नहीं कर सकते हैं। इसलिए, बड़े संगठनों के ज्ञान कार्यकर्ताओं के पास अधिकांशतः उस डेटा तक पहुंच नहीं होती है जिसकी उन्हें अपना काम सर्वोत्तम तरीके से करने के लिए आवश्यकता होती है। जब उनके पास डेटा तक पहुंच होगी, तब डेटा की गुणवत्ता खराब हो सकती है। सामग्री संचालन प्रैक्टिस या [[कॉर्पोरेट डेटा]] अथॉरिटी (डेटा समस्या उत्पन्न होने पर व्यवसाय के सर्वोत्तम हित में आगे बढ़ने के तरीके को निर्धारित करने के लिए जिम्मेदार व्यक्ति या क्षेत्र) की स्थापना करके, इन समस्याओं को कम किया जा सकता है। | |||
== कार्यान्वयन == | == कार्यान्वयन == | ||
सामग्री संचालन पहल का कार्यान्वयन सीमा के साथ-साथ मूल में भी भिन्न हो सकता है। कभी-कभी, उद्यम-व्यापी प्रयास प्रारंभ करने के लिए कार्यकारी अधिदेश उत्पन्न होगा, कभी-कभी अधिदेश पायलट प्रोजेक्ट या प्रोजेक्ट बनाने के लिए होगा, जो सीमा और उद्देश्यों में सीमित होगा, जिसका उद्देश्य उपस्ति था विवादों को हल करना या मूल्य प्रदर्शित करना होगा। कभी-कभी कोई पहल संगठन के पदानुक्रम में नीचे से प्रारंभ होगी, और संगठन में ऊपर के संभावित प्रायोजकों के लिए मूल्य प्रदर्शित करने के लिए सीमित सीमा में नियत की जाएगी। कार्यान्वयन का प्रारंभिक सीमा एक-बारगी आईटी प्रणाली की समीक्षा से लेकर क्रॉस-संगठन पहल तक, अधिक भिन्न हो सकता है। | |||
== डेटा प्रशासन उपकरण == | == डेटा प्रशासन उपकरण == | ||
सफल | सफल सामग्री संचालन कार्यक्रमों के नेताओं ने दिसंबर 2006 में ऑरलैंडो, एफएल में सामग्री संचालन सम्मेलन में घोषणा की कि सामग्री संचालन 80 से 95 प्रतिशत संचार के बीच है।<ref>{{cite web |url=http://www.dmreview.com/issues/2007_48/10001356-1.html |title=Data Governance: One Size Does Not Fit All |last=Hopwood |first=Peter |publisher=DM Review Magazine |date=June 2008 |access-date=2023-02-20 |archive-url=https://web.archive.org/web/20080928194651/http://www.dmreview.com/issues/2007_48/10001356-1.html |archive-date=2008-09-28 |quote=At the inaugural Data Governance Conference in Orlando, Florida, in December 2006, leaders of successful data governance programs declared that in their experience, data governance is between 80 and 95 percent communication. Clearly, data governance is not a typical IT project. |url-status=dead}}</ref> जैसा कि कहा गया है, यह माना जाता है कि सामग्री संचालन प्रोग्राम के अनेक उद्देश्यों को उचित उपकरणों के साथ पूरा किया जाना चाहिए। अनेक विक्रेता वर्तमान अपने उत्पादों को सामग्री संचालन टूल के रूप में स्थापित कर रहे हैं; विभिन्न डेटा प्रशासन पहलों के भिन्न-भिन्न फोकस क्षेत्रों के कारण, कोई भी उपकरण उपयुक्त हो भी सकता है और नहीं भी, इसके अतिरिक्त, अनेक उपकरण जिन्हें शासन उपकरण के रूप में विपणन नहीं किया जाता है, वह शासन की जरूरतों और मांगों को संबोधित करते हैं | ||
==यह भी देखें== | ==यह भी देखें== |
Revision as of 01:03, 13 July 2023
Part of a series on |
Governance |
---|
सामग्री संचालन वह शब्द है जिसका उपयोग विश्लेषण के दोनों स्तरों पर किया जाता है। इस प्रकार यह पूर्व राजनीतिक अवधारणा होती है और अंतरराष्ट्रीय संबंधों और इंटरनेट प्रशासन का भाग होती है, अतः उत्तरार्द्ध डेटा प्रबंधन अवधारणा है और कॉर्पोरेट डेटा प्रशासन का भाग होती है।
मैक्रो स्तर
वृहद स्तर पर, सामग्री संचालन का तात्पर्य देशों द्वारा सीमा पार डेटा प्रवाह के संचालन से होता है, और इसलिए इसे अधिक त्रुटिहीन रूप से अंतर्राष्ट्रीय सामग्री संचालन कहा जाता है। यह नये क्षेत्र में विभिन्न प्रकार के डेटा को नियंत्रित करने वाले मानदंड, सिद्धांत और नियम सम्मिलित होते हैं।[1]
सूक्ष्म स्तर
यहां फोकस व्यक्तिगत कंपनी पर है। यहां सामग्री संचालन क्षमता से संबंधित डेटा प्रबंधन अवधारणा है जो किसी संगठन को यह सुनिश्चित करने में सक्षम बनाती है कि डेटा के पूरे जीवनचक्र में उच्च डेटा गुणवत्ता उपस्तिथ है, और डेटा नियंत्रण प्रयुक्त किए जाते हैं जो व्यावसायिक उद्देश्यों का समर्थन करते हैं। सामग्री संचालन के प्रमुख फोकस क्षेत्रों में उपलब्धता, प्रयोज्यता, स्थिरता, सम्मिलित हैं।[2] डेटा अखंडता और डेटा सुरक्षा, मानक अनुपालन और पूरे उद्यम में प्रभावी डेटा प्रबंधन सुनिश्चित करने के लिए प्रक्रियाएं स्थापित करना सम्मिलित है जैसे कि खराब डेटा गुणवत्ता के प्रतिकूल प्रभावों के लिए उत्तरदेही और यह सुनिश्चित करना कि उद्यम के पास जो डेटा है उसका उपयोग पूरे संगठन द्वारा किया जा सकता है।
डेटा प्रबंधक ऐसी भूमिका है जो यह सुनिश्चित करती है कि सामग्री संचालन प्रक्रियाओं का पालन किया जाए और दिशानिर्देशों को प्रयुक्त किया जाए, साथ ही सामग्री संचालन प्रक्रियाओं में सुधार की पक्षसमर्थन की जाए।
सामग्री संचालन में व्यावसायिक उद्यम में किसी संगठन के डेटा की सुसंगत और उचित हैंडलिंग बनाने के लिए आवश्यक लोगों, प्रक्रियाओं और सूचना प्रौद्योगिकी को सम्मिलित किया गया है। यह सभी डेटा प्रबंधन प्रथाओं को आवश्यक आधार, रणनीति और संरचना प्रदान करता है जिससे कि यह सुनिश्चित किया जा सके कि डेटा को संपत्ति के रूप में प्रबंधित किया जाता है और सार्थक जानकारी में बदल दिया जाता है।[3] लक्ष्यों को उद्यम के सभी स्तरों पर परिभाषित किया जा सकता है और ऐसा करने से उन लोगों द्वारा प्रक्रियाओं को स्वीकार करने में सहायता मिल सकती है जो उनका उपयोग करेंगे। कुछ लक्ष्यों में सम्मिलित हैं:
- निर्णय लेने में निरंतरता और आत्मविश्वास बढ़ाना
- नियामक जुर्माने का कठिन परिस्थिति कम करना
- सूचना सुरक्षा में सुधार, डेटा वितरण नीतियों के लिए आवश्यकताओं को परिभाषित और सत्यापित करना[4] * डेटा की आय सृजन क्षमता को अधिकतम करना
- सूचना गुणवत्ता के लिए उत्तरदेही निर्धारित करना
- पर्यवेक्षी कर्मचारियों द्वारा उत्तम योजना बनाना सक्षम करें
- पुनः कार्य को कम करना या समाप्त करना
- स्टाफ प्रभावशीलता का अनुकूलन करें
- सुधार प्रयासों को सक्षम करने के लिए प्रक्रिया प्रदर्शन आधार रेखा स्थापित करें
- सभी लाभों को स्वीकार करें और धारण करें
इन लक्ष्यों को सामग्री संचालन कार्यक्रमों के कार्यान्वयन, या परिवर्तन प्रबंधन विधियाें का उपयोग करने वाली पहलों द्वारा साकार किया जाता है।
जब कंपनियां अपने डेटा पर नियंत्रण पाने की इच्छा रखती हैं या इसकी आवश्यकता होती है, तब वह अपने लोगों को सशक्त बनाती हैं, प्रक्रियाएं स्थापित करती हैं और ऐसा करने के लिए प्रौद्योगिकी से सहायता लेती हैं।[5]
सामग्री संचालन ड्राइवर
जबकि डेटा प्रशासन पहल को डेटा गुणवत्ता में सुधार की इच्छा से संचालित किया जा सकता है, वह अधिकांशतः कॉर्पोरेट शीर्षक वरिष्ठ प्रबंधन|सी-स्तर के नेताओं द्वारा बाहरी नियमों का उत्तर देने से प्रेरित होते हैं। सीआईओ वाटरकूलर समुदाय द्वारा हाल ही में की गई सूची में, 54% ने कहा कि मुख्य चालक प्रक्रियाओं में दक्षता थी; 39% - नियामक आवश्यकताएँ; और केवल 7% ग्राहक सेवा।[6] इन विनियमों के उदाहरणों में सर्बनेस-ऑक्सले अधिनियम, बेसल I, बेसल II, स्वास्थ्य बीमा पोर्टेबिलिटी और उत्तरदेही अधिनियम, सामान्य डेटा संरक्षण विनियमन, अच्छा विनिर्माण अभ्यास, सम्मिलित हैं।[7] और अनेक डेटा गोपनीयता नियम। इन विनियमों का अनुपालन प्राप्त करने के लिए, व्यावसायिक प्रक्रियाओं और नियंत्रणों को इन विनियमों के अधीन डेटा को नियंत्रित करने के लिए औपचारिक प्रबंधन प्रक्रियाओं की आवश्यकता होती है।[8] सफल कार्यक्रम पर्यवेक्षी और कार्यकारी नेतृत्व दोनों के लिए सार्थक ड्राइवरों की पहचान करते हैं।
बाहरी विनियमों के बीच सामान्य विषय कठिन परिस्थिति प्रबंधन की आवश्यकता पर केन्द्रित हैं। कठिन परिस्थिति वित्तीय गलतकथन ी, संवेदनशील डेटा का अनजाने में जारी होना या प्रमुख निर्णयों के लिए खराब डेटा गुणवत्ता हो सकते हैं। इन कठिन परिस्थितिों को प्रबंधित करने के तरीके भिन्न-भिन्न उद्योगों में भिन्न-भिन्न होते हैं। सामान्यतः संदर्भित सर्वोत्तम प्रथाओं और दिशानिर्देशों के उदाहरणों में सीओबीआईटी, आईएसओ/आईईसी 38500, और अन्य सम्मिलित हैं। विनियमों और मानकों का प्रसार डेटा प्रशासन कुशल ों के लिए चुनौतियां उत्पन्न करता है, खासकर जब अनेक नियम प्रबंधित किए जा रहे डेटा को ओवरलैप करते हैं। संगठन अधिकांशतः इन चुनौतियों से निपटने के लिए सामग्री संचालन पहल प्रारंभ करते हैं।
डेटा प्रशासन पहल (आयाम)
डेटा प्रशासन पहल डेटा की त्रुटिहीनता, पूर्णता, स्थिरता, समयबद्धता, वैधता और विशिष्टता के लिए जिम्मेदार टीम नियुक्त करके डेटा की गुणवत्ता में सुधार करती है।[9] इस टीम में सामान्यतः कार्यकारी नेतृत्व, परियोजना प्रबंधन, लाइन फलन|लाइन-ऑफ-बिजनेस मैनेजर और डेटा स्टीवर्ड सम्मिलित होते हैं। टीम सामान्यतः एंटरप्राइज़ डेटा को ट्रैक करने और सुधारने के लिए कुछ प्रकार की कार्यप्रणाली का उपयोग करती है, जैसे सिक्स सिग्मा, और डेटा मैपिंग, डेटा प्रोफाइलिंग, सफाई और डेटा की निगरानी के लिए उपकरण।
सामग्री संचालन पहल का उद्देश्य अनेक उद्देश्यों को प्राप्त करना हो सकता है, जिसमें आंतरिक और बाहरी ग्राहकों (जैसे आपूर्ति श्रृंखला प्रबंधन) को उत्तम दृश्यता प्रदान करना, अनुपालन (विनियमन) का अनुपालन, तेजी से कंपनी के विकास या विलय और अधिग्रहण के पश्चात् संचालन में सुधार करना, या सहायता करना सम्मिलित है। भ्रम और त्रुटि को कम करके और उनके ज्ञान के सीमा को बढ़ाकर उद्यम ज्ञान श्रमिकों की दक्षता। अनेक सामग्री संचालन पहल विभागीय स्तर पर सूचना गुणवत्ता को ठीक करने के पिछले प्रयासों से भी प्रेरित हैं, जिससे असंगत और अनावश्यक डेटा गुणवत्ता प्रक्रियाएं होती हैं। अधिकांश बड़ी कंपनियों के पास अनेक एप्लिकेशन और डेटाबेस होते हैं जो आसानी से जानकारी साझा नहीं कर सकते हैं। इसलिए, बड़े संगठनों के ज्ञान कार्यकर्ताओं के पास अधिकांशतः उस डेटा तक पहुंच नहीं होती है जिसकी उन्हें अपना काम सर्वोत्तम तरीके से करने के लिए आवश्यकता होती है। जब उनके पास डेटा तक पहुंच होगी, तब डेटा की गुणवत्ता खराब हो सकती है। सामग्री संचालन प्रैक्टिस या कॉर्पोरेट डेटा अथॉरिटी (डेटा समस्या उत्पन्न होने पर व्यवसाय के सर्वोत्तम हित में आगे बढ़ने के तरीके को निर्धारित करने के लिए जिम्मेदार व्यक्ति या क्षेत्र) की स्थापना करके, इन समस्याओं को कम किया जा सकता है।
कार्यान्वयन
सामग्री संचालन पहल का कार्यान्वयन सीमा के साथ-साथ मूल में भी भिन्न हो सकता है। कभी-कभी, उद्यम-व्यापी प्रयास प्रारंभ करने के लिए कार्यकारी अधिदेश उत्पन्न होगा, कभी-कभी अधिदेश पायलट प्रोजेक्ट या प्रोजेक्ट बनाने के लिए होगा, जो सीमा और उद्देश्यों में सीमित होगा, जिसका उद्देश्य उपस्ति था विवादों को हल करना या मूल्य प्रदर्शित करना होगा। कभी-कभी कोई पहल संगठन के पदानुक्रम में नीचे से प्रारंभ होगी, और संगठन में ऊपर के संभावित प्रायोजकों के लिए मूल्य प्रदर्शित करने के लिए सीमित सीमा में नियत की जाएगी। कार्यान्वयन का प्रारंभिक सीमा एक-बारगी आईटी प्रणाली की समीक्षा से लेकर क्रॉस-संगठन पहल तक, अधिक भिन्न हो सकता है।
डेटा प्रशासन उपकरण
सफल सामग्री संचालन कार्यक्रमों के नेताओं ने दिसंबर 2006 में ऑरलैंडो, एफएल में सामग्री संचालन सम्मेलन में घोषणा की कि सामग्री संचालन 80 से 95 प्रतिशत संचार के बीच है।[10] जैसा कि कहा गया है, यह माना जाता है कि सामग्री संचालन प्रोग्राम के अनेक उद्देश्यों को उचित उपकरणों के साथ पूरा किया जाना चाहिए। अनेक विक्रेता वर्तमान अपने उत्पादों को सामग्री संचालन टूल के रूप में स्थापित कर रहे हैं; विभिन्न डेटा प्रशासन पहलों के भिन्न-भिन्न फोकस क्षेत्रों के कारण, कोई भी उपकरण उपयुक्त हो भी सकता है और नहीं भी, इसके अतिरिक्त, अनेक उपकरण जिन्हें शासन उपकरण के रूप में विपणन नहीं किया जाता है, वह शासन की जरूरतों और मांगों को संबोधित करते हैं
यह भी देखें
- डेटा संप्रभुता
- सूचना आर्किटेक्चर
- सूचना शासन
- सूचना प्रौद्योगिकी शासन
- व्यवसाय शब्दार्थ प्रबंधन
- व्यावसायिक शब्दावली और व्यावसायिक नियमों का शब्दार्थ
- मास्टर डेटा प्रबंधन
- कोबिट
- आईएसओ/आईईसी 38500
- आईएसओ/टीसी 215
- परिचालन कठिन परिस्थिति प्रबंधन
- बेसल II समझौता
- HIPAA
- Sarbanes-Oxley अधिनियम
- सूचना प्रौद्योगिकी नियंत्रण
- डेटा सुरक्षा निर्देश (ईयू)
- यूनिवर्सल डेटा एलिमेंट फ्रेमवर्क
- संपत्ति विवरण मेटाडेटा स्कीमा
- सिमुलेशन शासन
- मशीन-लर्निंग अनुसंधान के लिए डेटासमूह की सूची
संदर्भ
- ↑ "सामान्य प्रश्न". Digital Trade and Data Governance Hub. Retrieved 2023-02-20.
- ↑ "What is data governance and why does it matter?". TechTarget.com. Retrieved 2023-02-20.
- ↑ Firican, George. "What is Data Governance? A complete guide". LightsOnData. Retrieved 2023-02-20.
- ↑ Gianni, Daniele (2014). "Data Policy Definition and Verification for System of Systems Governance". सिस्टम इंजीनियरिंग अनुप्रयोगों के लिए मॉडलिंग और सिमुलेशन समर्थन. pp. 99–130. doi:10.1002/9781118501757.ch5. ISBN 9781118460313.
- ↑ Sarsfield, Steve (2009). डेटा गवर्नेंस अनिवार्यता. IT Governance Publishing. ISBN 9781849281102.
- ↑ Warburton, Daniel (2017-03-15). "The Data Governance Report 2017 – Your Copy". CIOWaterCooler.co.uk. Retrieved 2023-02-20.
- ↑ "eCFR — Code of Federal Regulations". eCFR.gov. Retrieved 2023-02-20.
- ↑ "रिम्स डेटा गवर्नेंस हैंडबुक". RIMES. 2013-10-16. Archived from the original on 2016-03-05. Retrieved 2023-02-20.
- ↑ Dai, Wei; Wardlaw, Isaac (2016). "Data Profiling Technology of Data Governance Regarding Big Data: Review and Rethinking". सूचना प्रौद्योगिकी, नई पीढ़ी. Advances in Intelligent Systems and Computing. Vol. 448. pp. 439–450. doi:10.1007/978-3-319-32467-8_39. ISBN 978-3-319-32466-1.
- ↑ Hopwood, Peter (June 2008). "Data Governance: One Size Does Not Fit All". DM Review Magazine. Archived from the original on 2008-09-28. Retrieved 2023-02-20.
At the inaugural Data Governance Conference in Orlando, Florida, in December 2006, leaders of successful data governance programs declared that in their experience, data governance is between 80 and 95 percent communication. Clearly, data governance is not a typical IT project.
बाहरी संबंध