टिट्ज़ विस्तार प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 17: Line 17:
यदि <math>X</math> मीट्रिक स्थान है एवं <math>A</math> का गैर-रिक्त उपसमुच्चय <math>X</math> और <math>f : A \to \R</math> लिप्सचिट्ज़ स्थिरांक <math>K</math> के साथ लिप्सचिट्ज़ सतत फलन है तब <math>f</math> लिप्सचिट्ज़ निरंतर फ़ंक्शन <math>K</math> एक ही स्थिरांक <math>F : X \to \R</math> के साथ तक विस्तारित किया जा सकता है। यह प्रमेय [[होल्डर निरंतर कार्यों|होल्डर निरंतर फंक्शन]] के लिए भी मान्य है अर्थात यदि <math>f : A \to \R</math> होल्डर निरंतर फंक्शन है जिसका स्थिरांक <math>1</math> से कम या इसके समान्तर है तब <math>f</math> होल्डर निरंतर फ़ंक्शन <math>F : X \to \R</math> तक उसी स्थिरांक के साथ विस्तारित किया जा सकता है।<ref>{{cite journal|last1=McShane|first1=E. J.|title=कार्यों की सीमा का विस्तार|journal=Bulletin of the American Mathematical Society|date=1 December 1934|volume=40|issue=12|pages=837–843|doi=10.1090/S0002-9904-1934-05978-0|doi-access=free}}</ref>
यदि <math>X</math> मीट्रिक स्थान है एवं <math>A</math> का गैर-रिक्त उपसमुच्चय <math>X</math> और <math>f : A \to \R</math> लिप्सचिट्ज़ स्थिरांक <math>K</math> के साथ लिप्सचिट्ज़ सतत फलन है तब <math>f</math> लिप्सचिट्ज़ निरंतर फ़ंक्शन <math>K</math> एक ही स्थिरांक <math>F : X \to \R</math> के साथ तक विस्तारित किया जा सकता है। यह प्रमेय [[होल्डर निरंतर कार्यों|होल्डर निरंतर फंक्शन]] के लिए भी मान्य है अर्थात यदि <math>f : A \to \R</math> होल्डर निरंतर फंक्शन है जिसका स्थिरांक <math>1</math> से कम या इसके समान्तर है तब <math>f</math> होल्डर निरंतर फ़ंक्शन <math>F : X \to \R</math> तक उसी स्थिरांक के साथ विस्तारित किया जा सकता है।<ref>{{cite journal|last1=McShane|first1=E. J.|title=कार्यों की सीमा का विस्तार|journal=Bulletin of the American Mathematical Society|date=1 December 1934|volume=40|issue=12|pages=837–843|doi=10.1090/S0002-9904-1934-05978-0|doi-access=free}}</ref>


एच. टोंग और जेड एर्कन के कारण टिट्ज़ के प्रमेय का अन्य संस्करण (वास्तव में सामान्यीकरण) है:<ref name="Zaf:97">{{cite journal|last1=Zafer|first1=Ercan|title=वेक्टर वैल्यूड फ़ंक्शंस का विस्तार और पृथक्करण|journal=Turkish Journal of Mathematics|date=1997|volume=21|issue=4|pages=423–430|url=http://journals.tubitak.gov.tr/math/issues/mat-97-21-4/mat-21-4-4-e2104-04.pdf}}</ref> माना कि <math>A</math> सामान्य टोपोलॉजिकल स्पेस <math>X</math> का बंद उपसमुच्चय बनें। यदि <math>f : X \to \R</math> [[ऊपरी अर्धनिरंतर]] फ़ंक्शन है एवं <math>g : X \to \R</math> [[निचला अर्धनिरंतर]] फ़ंक्शन और <math>h : A \to \R</math> सतत फ़ंक्शन ऐसा है कि <math>f(x) \leq g(x)</math> प्रत्येक के लिए <math>x \in X</math> और <math>f(a) \leq h(a) \leq g(a)</math> प्रत्येक <math>a \in A</math> के लिए सतत है।
एच. टोंग और जेड एर्कन के कारण टिट्ज़ के प्रमेय का अन्य संस्करण (वास्तव में सामान्यीकरण) है:<ref name="Zaf:97">{{cite journal|last1=Zafer|first1=Ercan|title=वेक्टर वैल्यूड फ़ंक्शंस का विस्तार और पृथक्करण|journal=Turkish Journal of Mathematics|date=1997|volume=21|issue=4|pages=423–430|url=http://journals.tubitak.gov.tr/math/issues/mat-97-21-4/mat-21-4-4-e2104-04.pdf}}</ref> माना कि <math>A</math> सामान्य टोपोलॉजिकल स्पेस <math>X</math> का बंद उपसमुच्चय बनें। यदि <math>f : X \to \R</math> [[ऊपरी अर्धनिरंतर]] फ़ंक्शन है एवं <math>g : X \to \R</math> [[निचला अर्धनिरंतर]] फ़ंक्शन और <math>h : A \to \R</math> सतत फ़ंक्शन ऐसा है कि <math>f(x) \leq g(x)</math> प्रत्येक <math>x \in X</math> के लिए और <math>f(a) \leq h(a) \leq g(a)</math> प्रत्येक <math>a \in A</math> के लिए सतत है।


<math>h</math> का विस्तार <math>H : X \to \R</math> ऐसा है कि <math>f(x) \leq H(x) \leq g(x)</math> प्रत्येक के लिए <math>x \in X</math>यह प्रमेय कुछ अतिरिक्त परिकल्पनाओं के साथ भी मान्य है यदि <math>\R</math> इसे सामान्य स्थानीय रूप से ठोस [[रिज़्ज़ स्थान]] द्वारा प्रतिस्थापित किया जाता है।<ref name="Zaf:97" />
<math>h</math> का विस्तार <math>H : X \to \R</math> ऐसा है कि <math>f(x) \leq H(x) \leq g(x)</math> प्रत्येक <math>x \in X</math> के लिए। यह प्रमेय कुछ अतिरिक्त परिकल्पनाओं के साथ भी मान्य है यदि <math>\R</math> इसे सामान्य स्थानीय रूप से ठोस [[रिज़्ज़ स्थान]] द्वारा प्रतिस्थापित किया जाता है।<ref name="Zaf:97" />
==यह भी देखें==
==यह भी देखें==



Revision as of 08:52, 13 July 2023

टोपोलॉजी में टिट्ज़ विस्तार प्रमेय (जिसे टिट्ज़-उरीसोहन-ब्रौवर विस्तार प्रमेय या उरीसोहन-ब्रौवर लेम्मा के रूप में भी जाना जाता है)।[1] यह दर्शाता है कि सामान्य स्थान टोपोलॉजिकल स्थान के बंद उपसमुच्चय पर निरंतर कार्य (टोपोलॉजी) को यदि आवश्यक हो तो उसकी सीमा को संरक्षित करते हुए पूर्ण स्थान तक विस्तारित किया जा सकता है।

औपचारिक कथन

यदि एक सामान्य स्थान है और

के बंद उपसमुच्चय से वास्तविक संख्या में यूक्लिडियन टोपोलॉजी को ले जाने वाला सतत (टोपोलॉजी) मानचित्र है जबकि वहां से का निरंतर विस्तार उपस्थित है अर्थात वहां मानचित्र उपस्थित है
के साथ सभी पर निरंतर, सभी के लिए एवं इसके अतिरिक्त इस प्रकार चुना जा सकता है
यह है, यदि तब परिबद्ध है जब बाध्य होने के लिए चुना जा सकता है ( उसी सीमा के साथ)।

इतिहास

एल. ई. जे. ब्रौवर और हेनरी लेबेस्गुए ने प्रमेय की एक विशेष स्थिति सिद्ध की जब परिमित आयामी वास्तविक सदिश समष्टि है। हेनरिक फ्रांज फ्रेडरिक टिट्ज़ ने इसे सभी मीट्रिक स्थानों तक विस्तारित किया और पावेल सैमुइलोविच उरीसोहन ने सामान्य टोपोलॉजिकल रिक्त स्थान के लिए, जैसा कि यहां बताया गया है, प्रमेय को सिद्ध किया।[2][3]

समतुल्य कथन

यह प्रमेय उरीसोहन के लेम्मा के समतुल्य है (जो स्थान की सामान्यता के बराबर भी है) और व्यापक रूप से लागू है क्योंकि सभी मीट्रिक स्थान और सभी सघन स्थान हॉसडॉर्फ रिक्त स्थान सामान्य हैं। इसे प्रतिस्थापित करके के साथ कुछ अनुक्रमण सेट के लिए सामान्यीकृत एवं का कोई भी प्रत्यावर्तन या कोई भी सामान्य पूर्ण प्रत्यावर्तन किया जा सकता है।

भिन्नताएँ

यदि मीट्रिक स्थान है एवं का गैर-रिक्त उपसमुच्चय और लिप्सचिट्ज़ स्थिरांक के साथ लिप्सचिट्ज़ सतत फलन है तब लिप्सचिट्ज़ निरंतर फ़ंक्शन एक ही स्थिरांक के साथ तक विस्तारित किया जा सकता है। यह प्रमेय होल्डर निरंतर फंक्शन के लिए भी मान्य है अर्थात यदि होल्डर निरंतर फंक्शन है जिसका स्थिरांक से कम या इसके समान्तर है तब होल्डर निरंतर फ़ंक्शन तक उसी स्थिरांक के साथ विस्तारित किया जा सकता है।[4]

एच. टोंग और जेड एर्कन के कारण टिट्ज़ के प्रमेय का अन्य संस्करण (वास्तव में सामान्यीकरण) है:[5] माना कि सामान्य टोपोलॉजिकल स्पेस का बंद उपसमुच्चय बनें। यदि ऊपरी अर्धनिरंतर फ़ंक्शन है एवं निचला अर्धनिरंतर फ़ंक्शन और सतत फ़ंक्शन ऐसा है कि प्रत्येक के लिए और प्रत्येक के लिए सतत है।

का विस्तार ऐसा है कि प्रत्येक के लिए। यह प्रमेय कुछ अतिरिक्त परिकल्पनाओं के साथ भी मान्य है यदि इसे सामान्य स्थानीय रूप से ठोस रिज़्ज़ स्थान द्वारा प्रतिस्थापित किया जाता है।[5]

यह भी देखें

संदर्भ

  1. "Urysohn-Brouwer lemma", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  2. "Urysohn-Brouwer lemma", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  3. Urysohn, Paul (1925), "Über die Mächtigkeit der zusammenhängenden Mengen", Mathematische Annalen, 94 (1): 262–295, doi:10.1007/BF01208659, hdl:10338.dmlcz/101038.
  4. McShane, E. J. (1 December 1934). "कार्यों की सीमा का विस्तार". Bulletin of the American Mathematical Society. 40 (12): 837–843. doi:10.1090/S0002-9904-1934-05978-0.
  5. 5.0 5.1 Zafer, Ercan (1997). "वेक्टर वैल्यूड फ़ंक्शंस का विस्तार और पृथक्करण" (PDF). Turkish Journal of Mathematics. 21 (4): 423–430.


बाहरी संबंध