एंटीथेटिक वैरिएबल: Difference between revisions

From Vigyanwiki
No edit summary
Line 18: Line 18:
==उदाहरण 1==
==उदाहरण 1==


यदि चर X का नियम [0, 1] के साथ एक [[समान वितरण (निरंतर)]] का पालन करता है, तो पहला नमूना होगा  <math>u_1, \ldots, u_n</math>, जहां, किसी दिए गए i के लिए, <math>u_i</math> U(0, 1) से प्राप्त होता है। दूसरा नमूना से बनाया गया है  <math>u'_1, \ldots, u'_n</math>, कहां, किसी दिए गए i के लिए: <math>u'_i = 1-u_i</math>. यदि सेट <math>u_i</math> [0, 1] के साथ एक समान है, इसलिए हैं <math>u'_i</math>. इसके अलावा, सहप्रसरण नकारात्मक है, जो प्रारंभिक विचरण में कमी की अनुमति देता है।
यदि चर X का नियम [0, 1] के साथ एक [[समान वितरण (निरंतर)|समान बंटन]] का पालन करता है, तो पहला प्रतिदर्श <math>u_1, \ldots, u_n</math> होगा, जहां, किसी दिए गए i के लिए, <math>u_i</math> U(0, 1) से प्राप्त होता है। दूसरा प्रतिदर्श  <math>u'_1, \ldots, u'_n</math> से बनाया गया है, जहां, किसी दिए गए i के लिए: <math>u'_i = 1-u_i</math> | यदि सेट <math>u_i</math> [0, 1] के साथ एक समान है, इसलिए हैं <math>u'_i</math>. '''इसके अलावा, सहप्रसरण नकारात्मक है, जो प्रारंभिक विचरण में कमी''' की अनुमति देता है।


==उदाहरण 2: अभिन्न गणना==
==उदाहरण 2: अभिन्न गणना==

Revision as of 09:04, 13 July 2023

सांख्यिकी में, एंटीथेटिक विचर विधि मोंटे कार्लो विधियों में उपयोग की जाने वाली एक प्रसरण समानयन तकनीक है। यह ध्यान में रखते हुए कि सिम्युलेटेड संकेत (मोंटे कार्लो विधियों का उपयोग करके) में त्रुटि में एक से अधिक वर्गमूल अभिसरण हैं, सटीक परिणाम प्राप्त करने के लिए बहुत बड़ी संख्या में प्रतिदर्श पथों की आवश्यकता होती है। एंटीथेटिक विचर विधि सिमुलेशन परिणामों के प्रसरण को कम करती है।[1][2]

अंतर्निहित सिद्धांत

एंटीथेटिक विचर तकनीक में प्राप्त प्रत्येक प्रतिदर्श पथ के लिए, इसके एंटीथेटिक पथ को लेने में सम्मिलित होता है - जिसे लेने के लिए एक पथ दिया जाता है। इस तकनीक का लाभ दोगुना है: यह N पथ उत्पन्न करने के लिए लिए जाने वाले प्रसामान्य प्रतिदर्शों की संख्या को कम करता है, और यह प्रतिदर्श पथों के प्रसरण को कम करता है, जिससे सटीकता में सुधार होता है।

मान लीजिए कि हम अनुमान लगाना चाहेंगे

उसके लिए हमने दो प्रतिदर्श तैयार किए हैं

का एक निष्पक्ष अनुमान द्वारा दिया गया है

और

इसलिए यदि ऋणात्मक है तो प्रसरण कम हो जाता है।

उदाहरण 1

यदि चर X का नियम [0, 1] के साथ एक समान बंटन का पालन करता है, तो पहला प्रतिदर्श होगा, जहां, किसी दिए गए i के लिए, U(0, 1) से प्राप्त होता है। दूसरा प्रतिदर्श से बनाया गया है, जहां, किसी दिए गए i के लिए: | यदि सेट [0, 1] के साथ एक समान है, इसलिए हैं . इसके अलावा, सहप्रसरण नकारात्मक है, जो प्रारंभिक विचरण में कमी की अनुमति देता है।

उदाहरण 2: अभिन्न गणना

हम अनुमान लगाना चाहेंगे

सटीक परिणाम है . इस अभिन्न को अपेक्षित मूल्य के रूप में देखा जा सकता है , कहाँ

और यू एक समान वितरण (निरंतर) [0, 1] का पालन करता है।

निम्न तालिका शास्त्रीय मोंटे कार्लो अनुमान (नमूना आकार: 2n, जहां n = 1500) की तुलना एंटीथेटिक विचर अनुमान (नमूना आकार: n, रूपांतरित नमूना 1 - u के साथ पूरा) से करती हैi):

Estimate Standard deviation
Classical Estimate 0.69365 0.00255
Antithetic Variates 0.69399 0.00063

परिणाम का अनुमान लगाने के लिए एंटीथेटिक विचर विधि का उपयोग एक महत्वपूर्ण भिन्नता में कमी दर्शाता है।

यह भी देखें

  • विभिन्नताओं पर नियंत्रण रखें

संदर्भ

  1. Botev, Z.; Ridder, A. (2017). "विचरण में कमी". Wiley StatsRef: Statistics Reference Online: 1–6. doi:10.1002/9781118445112.stat07975. ISBN 9781118445112.
  2. Kroese, D. P.; Taimre, T.; Botev, Z. I. (2011). मोंटे कार्लो विधियों की पुस्तिका. John Wiley & Sons.(Chapter 9.3)