पैरामीट्रिज़ेशन (ज्यामिति): Difference between revisions

From Vigyanwiki
Line 22: Line 22:


== अपरिवर्तन ==
== अपरिवर्तन ==
जैसा कि ऊपर बताया गया है, किसी दिए गए मॉडल, ज्यामितीय वस्तु आदि के मापदंडों की पसंद में मनमानी होती है। अक्सर, कोई किसी वस्तु के आंतरिक गुणों को निर्धारित करना चाहता है जो इस मनमानी पर निर्भर नहीं होते हैं, जो इसलिए किसी विशेष विकल्प से स्वतंत्र होते हैं। पैरामीटर. यह विशेष रूप से भौतिकी में मामला है, जिसमें पैरामीट्रिजेशन इनवेरिएंट (भौतिकी) (या 'रिपरामीट्रिजेशन इनवेरिएंस') [[भौतिक सिद्धांत]] (विशेष रूप से [[सामान्य सापेक्षता]] में) की खोज में एक मार्गदर्शक सिद्धांत है।
जैसा कि ऊपर उल्लेख किया गया है, किसी दिए गए मॉडल, ज्यामितीय वस्तु आदि के लिए मापदंडों का चुनाव अनैतिक है। अक्सर, कोई किसी वस्तु के आंतरिक गुणों को निर्धारित करना चाहता है जो इस मनमाने पैरामीटर पर निर्भर नहीं होते हैं, जो इसलिए किसी विशेष विकल्प से स्वतंत्र होते हैं। यह विशेष रूप से भौतिकी में मामला है, जिसमें भौतिक रूप से स्वीकार्य सिद्धांतों (विशेष रूप से सामान्य सापेक्षता में) की खोज में पैरामीट्रिजेशन इनवेरिएंस (या 'रिपेरामीट्रिजेशन इनवेरिएंस') एक मार्गदर्शक सिद्धांत है।


उदाहरण के लिए, जबकि कुछ घुमावदार रेखा पर एक निश्चित बिंदु का स्थान संख्याओं के एक सेट द्वारा दिया जा सकता है, जिनके मान इस पर निर्भर करते हैं कि वक्र कैसे पैरामीट्रिज्ड है, ऐसे दो निश्चित बिंदुओं के बीच वक्र की [[लंबाई]] (उचित रूप से परिभाषित) स्वतंत्र होगी पैरामीट्रिज़ेशन का विशेष विकल्प (इस मामले में: वह विधि जिसके द्वारा रेखा पर एक मनमाना बिंदु विशिष्ट रूप से अनुक्रमित होता है)। इसलिए वक्र की लंबाई एक पैरामीटर-अपरिवर्तनीय मात्रा है। ऐसे मामलों में पैरामीटराइजेशन एक गणितीय उपकरण है जिसका उपयोग परिणाम निकालने के लिए किया जाता है जिसका मान पैरामीटराइजेशन के विवरण पर निर्भर नहीं करता है, या उसका संदर्भ नहीं देता है। अधिक आम तौर पर, एक भौतिक सिद्धांत के पैरामीट्रिजेशन इनवेरिएंस का तात्पर्य है कि या तो पैरामीटर स्थान की आयामीता या मात्रा प्रश्न में भौतिकी (भौतिक महत्व की मात्रा) का वर्णन करने के लिए आवश्यक से अधिक है।
उदाहरण के लिए, जबकि कुछ घुमावदार रेखा पर एक निश्चित बिंदु का स्थान संख्याओं के एक सेट द्वारा दिया जा सकता है, जिसका मान इस पर निर्भर करता है कि वक्र कैसे पैरामीट्रिज्ड है, ऐसे दो निश्चित बिंदुओं के बीच वक्र की [[लंबाई]] (उचित रूप से परिभाषित) स्वतंत्र होगी पैरामीट्रिजेशन की विशेष पसंद (इस मामले में: वह विधि जिसके द्वारा रेखा पर एक मनमाना बिंदु विशिष्ट रूप से अनुक्रमित होता है)। इसलिए वक्र की लंबाई एक मानकीकरण-अपरिवर्तनीय मात्रा है। ऐसे मामलों में, पैरामीटराइजेशन एक गणितीय उपकरण है जिसका उपयोग परिणाम निकालने के लिए किया जाता है जिसका मूल्य पैरामीटराइजेशन के विवरण पर निर्भर नहीं करता है, या इसका संदर्भ नहीं देता है। अधिक आम तौर पर, एक भौतिक सिद्धांत के पैरामीट्रिजेशन इनवेरिएंस का तात्पर्य है कि या तो पैरामीटर स्पेस की आयामीता या मात्रा प्रश्न में भौतिकी (भौतिक महत्व की मात्रा) का वर्णन करने के लिए आवश्यक से अधिक है।


यद्यपि सामान्य सापेक्षता के सिद्धांत को एक समन्वय प्रणाली के संदर्भ के बिना व्यक्त किया जा सकता है, भौतिक (अर्थात् अवलोकन योग्य) मात्राओं की गणना जैसे कि [[ अंतरिक्ष समय ]] की वक्रता में हमेशा गणना में शामिल स्पेसटाइम बिंदुओं को संदर्भित करने के लिए एक विशेष समन्वय प्रणाली की शुरूआत शामिल होती है। . सामान्य सापेक्षता के संदर्भ में, समन्वय प्रणाली की पसंद को स्पेसटाइम को 'पैरामीटराइजिंग' करने की एक विधि के रूप में माना जा सकता है, और उस पसंद के लिए भौतिक-महत्वपूर्ण मात्रा की गणना के परिणाम की असंवेदनशीलता को एक उदाहरण के रूप में माना जा सकता है पैरामीटराइजेशन इनवेरिएंस का।
यद्यपि सामान्य सापेक्षता के सिद्धांत को एक समन्वय प्रणाली के संदर्भ के बिना व्यक्त किया जा सकता है, भौतिक (अर्थात् अवलोकन योग्य) मात्राओं की गणना जैसे कि स्पेसटाइम की वक्रता में हमेशा गणना में शामिल स्पेसटाइम बिंदुओं को संदर्भित करने के लिए एक विशेष समन्वय प्रणाली की शुरूआत शामिल होती है। सामान्य सापेक्षता के संदर्भ में, समन्वय प्रणाली की पसंद को 'पैरामीटराइज़िंग' की एक विधि के रूप में  स्पेसटाइम, और उस विकल्प के लिए भौतिक-महत्वपूर्ण मात्रा की गणना के परिणाम की असंवेदनशीलता को पैरामीटराइजेशन इनवेरियन का एक उदाहरण माना जा सकता है।


एक अन्य उदाहरण के रूप में, भौतिक सिद्धांत जिनकी अवलोकन योग्य मात्राएँ केवल वस्तुओं के जोड़े के बीच की सापेक्ष दूरी (दूरियों का अनुपात) पर निर्भर करती हैं, उन्हें पैमाने पर अपरिवर्तनीय कहा जाता है। ऐसे सिद्धांतों में गणना के दौरान किसी पूर्ण दूरी का कोई भी संदर्भ एक पैरामीटर का परिचय देगा जिसके लिए सिद्धांत अपरिवर्तनीय है।
एक अन्य उदाहरण के रूप में, भौतिक सिद्धांत जिनकी अवलोकन योग्य मात्राएँ केवल वस्तुओं के जोड़े के बीच की सापेक्ष दूरी (दूरियों का अनुपात) पर निर्भर करती हैं, स्केल अपरिवर्तनीय कहलाते हैं। ऐसे सिद्धांतों में, गणना के दौरान किसी निरपेक्ष दूरी का कोई भी संदर्भ एक ऐसे पैरामीटर का परिचय देगा जिसके लिए सिद्धांत अपरिवर्तनीय है।
 
== उदाहरण ==


== उदाहरण ==<!-- some of these should be incorporated into the article -->
{{expand list|date=February 2011}}
* लड़के की सतह
* लड़के की सतह
* मैक्कुलघ का कॉची वितरण का पैरामीट्रिज़ेशन
* मैक्कुलघ का कॉची वितरण का पैरामीट्रिज़ेशन
* [[पैरामीट्रिजेशन (जलवायु)]], [[सामान्य परिसंचरण मॉडल]] और [[संख्यात्मक मौसम भविष्यवाणी]] का पैरामीट्रिक प्रतिनिधित्व
* [[पैरामीट्रिजेशन (जलवायु)|पैरामीट्रिजेशन]] (जलवायु), सामान्य परिसंचरण मॉडल और संख्यात्मक मौसम पूर्वानुमान का पैरामीट्रिक प्रतिनिधित्व
* [[एकवचन इज़ोटेर्माल क्षेत्र प्रोफ़ाइल]]
* [[एकवचन इज़ोटेर्माल क्षेत्र प्रोफ़ाइल|विलक्षण इज़ोटेर्माल क्षेत्र प्रोफ़ाइल]]
* [[लैम्ब्डा-सीडीएम मॉडल]], [[महा विस्फोट]] ब्रह्मांड विज्ञान का मानक [[वैज्ञानिक मॉडल]]
* [[लैम्ब्डा-सीडीएम मॉडल]], बिग बैंग कॉस्मोलॉजी का मानक मॉडल


== तकनीक ==<!-- some of these should be incorporated into the article -->
== तकनीक ==
{{expand list|date=February 2011}}
* [[फेनमैन पैरामीट्रिजेशन]]
* [[फेनमैन पैरामीट्रिजेशन]]
* [[श्विंगर पैरामीट्रिज़ेशन]]
* [[श्विंगर पैरामीट्रिज़ेशन]]
* [[ठोस मॉडलिंग]]
* [[ठोस मॉडलिंग]]
* [[डिपेंडेंसी इंजेक्शन]]
* [[डिपेंडेंसी इंजेक्शन|निर्भरता अन्तःक्षेपण]]


== संदर्भ ==
== संदर्भ ==

Revision as of 11:54, 18 July 2023

गणित में, और अधिक विशेष रूप से ज्यामिति में, पैरामीट्रिजेशन (या पैरामीटराइजेशन; पैरामीटराइसेशन, पैरामीट्रिसेशन) एक वक्र, एक सतह, या, अधिक सामान्यतः, एक मैनिफोल्ड या एक विविधता के पैरामीट्रिक समीकरणों को खोजने की प्रक्रिया है, जो एक अंतर्निहित समीकरण द्वारा परिभाषित होती है। व्युत्क्रम प्रक्रिया को अन्तर्निहितीकरण कहा जाता है।[1] अपने आप में "पैरामीटराइज़ करना" का अर्थ  "पैरामीटर के संदर्भ में व्यक्त करना" है।[2]

पैरामीट्रिज़ेशन एक गणितीय प्रक्रिया है जिसमें किसी प्रणाली, प्रक्रिया या मॉडल की स्थिति को कुछ स्वतंत्र मात्राओं के एक फ़ंक्शन के रूप में व्यक्त किया जाता है जिन्हें पैरामीटर कहा जाता है। सिस्टम की स्थिति आम तौर पर निर्देशांक के एक सीमित सेट द्वारा निर्धारित की जाती है, और इस प्रकार पैरामीट्रिज़ेशन में प्रत्येक निर्देशांक के लिए कई वास्तविक चर का एक फ़ंक्शन शामिल होता है। पैरामीटरों की संख्या सिस्टम की स्वतंत्रता की डिग्री की संख्या है।

उदाहरण के लिए, एक बिंदु की स्थिति जो त्रि-आयामी स्पेस में एक वक्र पर चलती है, एक निश्चित मूल से शुरू होने पर बिंदु तक पहुंचने के लिए आवश्यक समय से निर्धारित होती है। यदि x, y, z बिंदु के निर्देशांक हैं, तो गति को एक पैरामीट्रिक समीकरण द्वारा वर्णित किया गया है [1]

जहाँ t पैरामीटर है और समय दर्शाता है। ऐसा पैरामीट्रिक समीकरण, समय के रूप में t की किसी भी व्याख्या की आवश्यकता के बिना, पूरी तरह से वक्र को निर्धारित करता है, और इस प्रकार इसे वक्र का पैरामीट्रिक समीकरण कहा जाता है (इसे कभी-कभी यह कहकर संक्षिप्त किया जाता है कि किसी के पास पैरामीट्रिक वक्र है)। इसी प्रकार, दो मापदंडों t और u के फलनों पर विचार करके एक सतह का पैरामीट्रिक समीकरण प्राप्त किया जा सकता है।

गैर-विशिष्टता

पैरामीट्रिजेशन आमतौर पर अद्वितीय नहीं होते हैं। साधारण त्रि-आयामी वस्तु को पैरामीट्रिज्ड (या "समन्वित"), कार्टेशियन निर्देशांक (x, y, z), बेलनाकार ध्रुवीय निर्देशांक (ρ, φ, z), गोलाकार निर्देशांक (r, φ, θ) या अन्य समन्वय प्रणालियों के साथ समान रूप से किया जा सकता है।

इसी प्रकार, मानव ट्राइक्रोमैटिक रंग दृष्टि का रंग स्थान तीन रंगों लाल, हरा और नीला, आरजीबी, या सियान, मैजेंटा, पीला और काला, सीएमवाईके के संदर्भ में पैरामीट्रिज किया जा सकता है।

आयाम

आम तौर पर, किसी मॉडल या ज्यामितीय वस्तु का वर्णन करने के लिए आवश्यक न्यूनतम पैरामीटर उसके आयाम के बराबर होते हैं, और पैरामीटर का दायरा - उनकी अनुमत सीमाओं के भीतर - पैरामीटर स्थान है। यद्यपि पैरामीटर का एक अच्छा सेट ऑब्जेक्ट स्पेस में प्रत्येक बिंदु की पहचान की अनुमति देता है, यह हो सकता है कि, किसी दिए गए पैरामीट्रिज़ेशन के लिए, विभिन्न पैरामीटर मान एक ही बिंदु को संदर्भित कर सकते हैं। इस तरह की मैपिंग विशेषणात्मक तो होती हैं, लेकिन विशेषणात्मक नहीं। एक उदाहरण बेलनाकार ध्रुवीय निर्देशांक (ρ, φ, z) और (ρ, φ + 2π, z) का योग है।

अपरिवर्तन

जैसा कि ऊपर उल्लेख किया गया है, किसी दिए गए मॉडल, ज्यामितीय वस्तु आदि के लिए मापदंडों का चुनाव अनैतिक है। अक्सर, कोई किसी वस्तु के आंतरिक गुणों को निर्धारित करना चाहता है जो इस मनमाने पैरामीटर पर निर्भर नहीं होते हैं, जो इसलिए किसी विशेष विकल्प से स्वतंत्र होते हैं। यह विशेष रूप से भौतिकी में मामला है, जिसमें भौतिक रूप से स्वीकार्य सिद्धांतों (विशेष रूप से सामान्य सापेक्षता में) की खोज में पैरामीट्रिजेशन इनवेरिएंस (या 'रिपेरामीट्रिजेशन इनवेरिएंस') एक मार्गदर्शक सिद्धांत है।

उदाहरण के लिए, जबकि कुछ घुमावदार रेखा पर एक निश्चित बिंदु का स्थान संख्याओं के एक सेट द्वारा दिया जा सकता है, जिसका मान इस पर निर्भर करता है कि वक्र कैसे पैरामीट्रिज्ड है, ऐसे दो निश्चित बिंदुओं के बीच वक्र की लंबाई (उचित रूप से परिभाषित) स्वतंत्र होगी पैरामीट्रिजेशन की विशेष पसंद (इस मामले में: वह विधि जिसके द्वारा रेखा पर एक मनमाना बिंदु विशिष्ट रूप से अनुक्रमित होता है)। इसलिए वक्र की लंबाई एक मानकीकरण-अपरिवर्तनीय मात्रा है। ऐसे मामलों में, पैरामीटराइजेशन एक गणितीय उपकरण है जिसका उपयोग परिणाम निकालने के लिए किया जाता है जिसका मूल्य पैरामीटराइजेशन के विवरण पर निर्भर नहीं करता है, या इसका संदर्भ नहीं देता है। अधिक आम तौर पर, एक भौतिक सिद्धांत के पैरामीट्रिजेशन इनवेरिएंस का तात्पर्य है कि या तो पैरामीटर स्पेस की आयामीता या मात्रा प्रश्न में भौतिकी (भौतिक महत्व की मात्रा) का वर्णन करने के लिए आवश्यक से अधिक है।

यद्यपि सामान्य सापेक्षता के सिद्धांत को एक समन्वय प्रणाली के संदर्भ के बिना व्यक्त किया जा सकता है, भौतिक (अर्थात् अवलोकन योग्य) मात्राओं की गणना जैसे कि स्पेसटाइम की वक्रता में हमेशा गणना में शामिल स्पेसटाइम बिंदुओं को संदर्भित करने के लिए एक विशेष समन्वय प्रणाली की शुरूआत शामिल होती है। सामान्य सापेक्षता के संदर्भ में, समन्वय प्रणाली की पसंद को 'पैरामीटराइज़िंग' की एक विधि के रूप में  स्पेसटाइम, और उस विकल्प के लिए भौतिक-महत्वपूर्ण मात्रा की गणना के परिणाम की असंवेदनशीलता को पैरामीटराइजेशन इनवेरियन का एक उदाहरण माना जा सकता है।

एक अन्य उदाहरण के रूप में, भौतिक सिद्धांत जिनकी अवलोकन योग्य मात्राएँ केवल वस्तुओं के जोड़े के बीच की सापेक्ष दूरी (दूरियों का अनुपात) पर निर्भर करती हैं, स्केल अपरिवर्तनीय कहलाते हैं। ऐसे सिद्धांतों में, गणना के दौरान किसी निरपेक्ष दूरी का कोई भी संदर्भ एक ऐसे पैरामीटर का परिचय देगा जिसके लिए सिद्धांत अपरिवर्तनीय है।

उदाहरण

तकनीक

संदर्भ

  1. 1.0 1.1 Hughes-Hallet, Deborah; McCallum, William G.; Gleason, Andrew M. (2012-01-01). Calculus : Single and multivariable. John wiley. p. 780. ISBN 9780470888612. OCLC 828768012.
  2. "पैरामीटराइज़ की परिभाषा". www.merriam-webster.com (in English). Retrieved 2017-05-11.


बाहरी संबंध