टेलीग्राफ प्रक्रिया: Difference between revisions
m (7 revisions imported from alpha:टेलीग्राफ_प्रक्रिया) |
No edit summary |
||
Line 56: | Line 56: | ||
==संदर्भ== | ==संदर्भ== | ||
<references/> | <references/> | ||
[[Category:Created On 07/07/2023]] | [[Category:Created On 07/07/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:स्टोकेस्टिक विभेदक समीकरण]] |
Latest revision as of 19:31, 21 July 2023
संभाव्यता सिद्धांत में, टेलीग्राफ प्रक्रिया एक स्मृतिहीन सतत-समय स्टोकेस्टिक प्रक्रिया है जो दो अलग-अलग मान दिखाती है। यह बर्स्ट नॉइज़ को मॉडल करता है (जिसे पॉपकॉर्न नॉइज़ या यादृच्छिक टेलीग्राफ संकेत भी कहा जाता है)। यदि दो संभावित मान जो एक यादृच्छिक चर ले सकते हैं वे और हैं, तो प्रक्रिया को निम्नलिखित मास्टर समीकरणों द्वारा वर्णित किया जा सकता है:
और
जहां अवस्था से अवस्था में जाने के लिए परिवर्तन दर है और अवस्था से अवस्था में जाने के लिए परिवर्तन दर है। इस प्रक्रिया को काक प्रक्रिया (गणितज्ञ मार्क काक के नाम पर),[1] और द्विभाजित यादृच्छिक प्रक्रिया के नाम से भी जाना जाता है।[2]
समाधान
मास्टर समीकरण को एक सदिश प्रस्तुत करके आव्यूह रूप में संक्षिप्त रूप से लिखा गया है।
जहां
परिवर्तन दर आव्यूह है औपचारिक समाधान का निर्माण प्रारंभिक स्थिति से किया जाता है (जो परिभाषित करता है कि पर, स्थिति है)
- .
यह दर्शाया जा सकता है कि[3]
जहां सर्वसमिका आव्यूह है और औसत परिवर्तन दर है। जैसे , समाधान स्थिर वितरण तक पहुंचता है।
गुण
प्रारंभिक अवस्था का ज्ञान तेजी से क्षीण होता जाता है। इसलिए, समय के लिए, प्रक्रिया निम्नलिखित स्थिर मानों तक पहुंच जाएगी, जिसे सबस्क्रिप्ट s द्वारा दर्शाया गया है:
माध्य
भिन्नता:
कोई सहसंबंध फलन की भी गणना कर सकता है:
अनुप्रयोग
यह यादृच्छिक प्रक्रिया मॉडल निर्माण में व्यापक रूप से उपयुक्त होती है:
- भौतिकी में, स्पिन प्रणालियाँ और प्रतिदीप्ति आंतरायिकता द्विभाजित गुण दर्शाते हैं। लेकिन विशेष रूप से एकल अणु प्रयोगों में उपरोक्त सभी सूत्रों में निहित घातांकीय वितरण के बजाय बीजीय पूंछ वाले संभाव्यता वितरण का उपयोग किया जाता है।
- वित्त में स्टॉक की कीमतों का वर्णन करने के लिए।[1]
- प्रतिलेखन कारक बंधन और असंबद्धता का वर्णन करने के लिए जीव विज्ञान में है।
यह भी देखें
- मार्कोव श्रृंखला
- स्टोकेस्टिक प्रक्रियाओं के विषयों की सूची
- यादृच्छिक टेलीग्राफ संकेत
संदर्भ
- ↑ 1.0 1.1 Bondarenko, YV (2000). "वित्तीय सूचकांकों के विकास के विवरण के लिए संभाव्य मॉडल". Cybernetics and Systems Analysis. 36 (5): 738–742. doi:10.1023/A:1009437108439. S2CID 115293176.
- ↑ Margolin, G; Barkai, E (2006). "Nonergodicity of a Time Series Obeying Lévy Statistics". Journal of Statistical Physics. 122 (1): 137–167. arXiv:cond-mat/0504454. Bibcode:2006JSP...122..137M. doi:10.1007/s10955-005-8076-9. S2CID 53625405.
- ↑ Balakrishnan, V. (2020). Mathematical Physics: Applications and Problems. Springer International Publishing. pp. 474