क्रमिक रूप से संहतसमष्टि: Difference between revisions
(Created page with "{{Short description|Topological space where every sequence has a convergent subsequence.}} गणित में, एक टोपोलॉजिकल स्पेस <m...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Topological space where every sequence has a convergent subsequence.}} | {{Short description|Topological space where every sequence has a convergent subsequence.}} | ||
गणित में, एक [[टोपोलॉजिकल स्पेस]] <math>X</math>. | गणित में, एक [[टोपोलॉजिकल स्पेस]] <math>X</math>. प्रत्येक [[मीट्रिक स्थान]] स्वाभाविक रूप से एक टोपोलॉजिकल स्पेस है, और मीट्रिक स्पेस के लिए,[[ सघन स्थान | सघन स्थान]] और अनुक्रमिक कॉम्पैक्टनेस की धारणाएं समतुल्य हैं (यदि कोई गणनीय विकल्प के सिद्धांत को मानता है)। हालाँकि, क्रमिक रूप से कॉम्पैक्ट टोपोलॉजिकल स्पेस उपस्थित हैं जो कॉम्पैक्ट नहीं हैं, और कॉम्पैक्ट टोपोलॉजिकल स्पेस उपस्थित हैं जो क्रमिक रूप से कॉम्पैक्ट नहीं हैं। | ||
प्रत्येक [[मीट्रिक स्थान]] स्वाभाविक रूप से एक टोपोलॉजिकल स्पेस है, और मीट्रिक स्पेस के लिए, [[ सघन स्थान ]] और अनुक्रमिक कॉम्पैक्टनेस की धारणाएं समतुल्य हैं (यदि कोई गणनीय विकल्प के सिद्धांत को मानता है)। हालाँकि, क्रमिक रूप से कॉम्पैक्ट टोपोलॉजिकल स्पेस | |||
== उदाहरण और गुण == | == उदाहरण और गुण == | ||
[[मानक टोपोलॉजी]] के साथ सभी [[वास्तविक संख्या]]ओं का स्थान क्रमिक रूप से संकुचित नहीं होता है; क्रम <math>(s_n)</math> द्वारा दिए गए <math>s_n = n</math> सभी [[प्राकृतिक संख्या]]ओं के लिए<math>n</math>एक अनुक्रम है जिसका कोई अभिसरण अनुवर्ती नहीं है। | [[मानक टोपोलॉजी]] के साथ सभी [[वास्तविक संख्या]]ओं का स्थान क्रमिक रूप से संकुचित नहीं होता है; क्रम <math>(s_n)</math> द्वारा दिए गए <math>s_n = n</math> सभी [[प्राकृतिक संख्या]]ओं के लिए <math>n</math> एक अनुक्रम है जिसका कोई अभिसरण अनुवर्ती नहीं है। | ||
यदि कोई स्थान एक मीट्रिक स्थान है, तो यह क्रमिक रूप से कॉम्पैक्ट है यदि और केवल यदि यह कॉम्पैक्ट स्पेस है।<ref>Willard, 17G, p. 125.</ref> [[ऑर्डर टोपोलॉजी]] के साथ [[पहला बेशुमार क्रमसूचक]] क्रमिक रूप से कॉम्पैक्ट टोपोलॉजिकल स्पेस का एक उदाहरण है जो कॉम्पैक्ट नहीं है। [[उत्पाद टोपोलॉजी]] का <math>2^{\aleph_0}=\mathfrak c</math> [[बंद इकाई अंतराल|सवृत इकाई अंतराल]] की प्रतियां कॉम्पैक्ट स्पेस का एक उदाहरण है जो क्रमिक रूप से कॉम्पैक्ट नहीं है।<ref>Steen and Seebach, Example '''105''', pp. 125—126.</ref> | |||
== संबंधित धारणाएँ == | == संबंधित धारणाएँ == | ||
एक टोपोलॉजिकल स्पेस<math>X</math>यदि प्रत्येक अनंत उपसमुच्चय हो तो सीमा बिंदु संहत कहा जाता है<math>X</math>में एक [[सीमा बिंदु]] है<math>X</math>, और [[गणनीय रूप से सघन स्थान]] यदि प्रत्येक गणनीय | एक टोपोलॉजिकल स्पेस<math>X</math> यदि प्रत्येक अनंत उपसमुच्चय हो तो सीमा बिंदु संहत कहा जाता है <math>X</math> में एक [[सीमा बिंदु]] है <math>X</math>, और [[गणनीय रूप से सघन स्थान]] यदि प्रत्येक गणनीय विवृत आवरण में एक परिमित उपकवर हो। एक मीट्रिक स्पेस में, अनुक्रमिक कॉम्पैक्टनेस, सीमा बिंदु कॉम्पैक्टनेस, गणनीय कॉम्पैक्टनेस और कॉम्पैक्ट स्पेस की धारणाएं सभी समतुल्य हैं (यदि कोई पसंद के सिद्धांत को मानता है)। | ||
[[अनुक्रमिक स्थान]] में | [[अनुक्रमिक स्थान]] में अनुक्रमिक (हॉसडॉर्फ) [[टोपोलॉजिकल स्पेस|स्पेस]] अनुक्रमिक सघनता गणनीय सघनता के बराबर है।<ref>Engelking, General Topology, Theorem 3.10.31<br> K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon) | ||
</ref> | </ref> | ||
एक-बिंदु अनुक्रमिक संघनन की भी एक धारणा है - विचार यह है कि सभी गैर-अभिसरण अनुक्रमों को अतिरिक्त बिंदु पर एकत्रित होना चाहिए।<ref>Brown, Ronald, "Sequentially proper maps and a sequential | एक-बिंदु अनुक्रमिक संघनन की भी एक धारणा है - विचार यह है कि सभी गैर-अभिसरण अनुक्रमों को अतिरिक्त बिंदु पर एकत्रित होना चाहिए।<ref>Brown, Ronald, "Sequentially proper maps and a sequential | ||
compactification", J. London Math Soc. (2) 7 (1973) | compactification", J. London Math Soc. (2) 7 (1973) | ||
515-522. | 515-522. | ||
</ref> | </ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link| | * {{annotated link|बोलजानो-वीयरस्ट्रैस प्रमेय}} | ||
* {{annotated link| | * {{annotated link|फ़्रेचेट-उरीसोहन स्थान}} | ||
* {{annotated link| | * {{annotated link|मानचित्रों को कवर करने वाला अनुक्रम}} | ||
* {{annotated link| | * {{annotated link|अनुक्रमिक स्थान}} | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{Reflist}} | {{Reflist}} | ||
==संदर्भ== | ==संदर्भ== | ||
Line 47: | Line 39: | ||
*{{cite book | author=Willard, Stephen | title=General Topology | publisher=Dover Publications | year=2004 | isbn=0-486-43479-6}} | *{{cite book | author=Willard, Stephen | title=General Topology | publisher=Dover Publications | year=2004 | isbn=0-486-43479-6}} | ||
[[Category: सघनता (गणित)]] [[Category: टोपोलॉजिकल रिक्त स्थान के गुण]] | [[Category: सघनता (गणित)]] [[Category: टोपोलॉजिकल रिक्त स्थान के गुण]] | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 08/07/2023]] | [[Category:Created On 08/07/2023]] |
Revision as of 21:59, 13 July 2023
गणित में, एक टोपोलॉजिकल स्पेस . प्रत्येक मीट्रिक स्थान स्वाभाविक रूप से एक टोपोलॉजिकल स्पेस है, और मीट्रिक स्पेस के लिए, सघन स्थान और अनुक्रमिक कॉम्पैक्टनेस की धारणाएं समतुल्य हैं (यदि कोई गणनीय विकल्प के सिद्धांत को मानता है)। हालाँकि, क्रमिक रूप से कॉम्पैक्ट टोपोलॉजिकल स्पेस उपस्थित हैं जो कॉम्पैक्ट नहीं हैं, और कॉम्पैक्ट टोपोलॉजिकल स्पेस उपस्थित हैं जो क्रमिक रूप से कॉम्पैक्ट नहीं हैं।
उदाहरण और गुण
मानक टोपोलॉजी के साथ सभी वास्तविक संख्याओं का स्थान क्रमिक रूप से संकुचित नहीं होता है; क्रम द्वारा दिए गए सभी प्राकृतिक संख्याओं के लिए एक अनुक्रम है जिसका कोई अभिसरण अनुवर्ती नहीं है।
यदि कोई स्थान एक मीट्रिक स्थान है, तो यह क्रमिक रूप से कॉम्पैक्ट है यदि और केवल यदि यह कॉम्पैक्ट स्पेस है।[1] ऑर्डर टोपोलॉजी के साथ पहला बेशुमार क्रमसूचक क्रमिक रूप से कॉम्पैक्ट टोपोलॉजिकल स्पेस का एक उदाहरण है जो कॉम्पैक्ट नहीं है। उत्पाद टोपोलॉजी का सवृत इकाई अंतराल की प्रतियां कॉम्पैक्ट स्पेस का एक उदाहरण है जो क्रमिक रूप से कॉम्पैक्ट नहीं है।[2]
संबंधित धारणाएँ
एक टोपोलॉजिकल स्पेस यदि प्रत्येक अनंत उपसमुच्चय हो तो सीमा बिंदु संहत कहा जाता है में एक सीमा बिंदु है , और गणनीय रूप से सघन स्थान यदि प्रत्येक गणनीय विवृत आवरण में एक परिमित उपकवर हो। एक मीट्रिक स्पेस में, अनुक्रमिक कॉम्पैक्टनेस, सीमा बिंदु कॉम्पैक्टनेस, गणनीय कॉम्पैक्टनेस और कॉम्पैक्ट स्पेस की धारणाएं सभी समतुल्य हैं (यदि कोई पसंद के सिद्धांत को मानता है)।
अनुक्रमिक स्थान में अनुक्रमिक (हॉसडॉर्फ) स्पेस अनुक्रमिक सघनता गणनीय सघनता के बराबर है।[3]
एक-बिंदु अनुक्रमिक संघनन की भी एक धारणा है - विचार यह है कि सभी गैर-अभिसरण अनुक्रमों को अतिरिक्त बिंदु पर एकत्रित होना चाहिए।[4]
यह भी देखें
- बोलजानो-वीयरस्ट्रैस प्रमेय
- फ़्रेचेट-उरीसोहन स्थान
- मानचित्रों को कवर करने वाला अनुक्रम
- अनुक्रमिक स्थान – Topological space characterized by sequences
टिप्पणियाँ
- ↑ Willard, 17G, p. 125.
- ↑ Steen and Seebach, Example 105, pp. 125—126.
- ↑ Engelking, General Topology, Theorem 3.10.31
K.P. Hart, Jun-iti Nagata, J.E. Vaughan (editors), Encyclopedia of General Topology, Chapter d3 (by P. Simon) - ↑ Brown, Ronald, "Sequentially proper maps and a sequential compactification", J. London Math Soc. (2) 7 (1973) 515-522.
संदर्भ
- Munkres, James (1999). Topology (2nd ed.). Prentice Hall. ISBN 0-13-181629-2.
- Steen, Lynn A. and Seebach, J. Arthur Jr.; Counterexamples in Topology, Holt, Rinehart and Winston (1970). ISBN 0-03-079485-4.
- Willard, Stephen (2004). General Topology. Dover Publications. ISBN 0-486-43479-6.