त्रिगामा फलन: Difference between revisions

From Vigyanwiki
Line 2: Line 2:
{{For|3 चरों का बार्न्स का गामा फलन|त्रिगुण गामा फलन}}
{{For|3 चरों का बार्न्स का गामा फलन|त्रिगुण गामा फलन}}


[[File:Psi1.png|right|thumb|300px|त्रिगामा फ़ंक्शन का रंग प्रतिनिधित्व, {{math|''ψ''<sub>1</sub>(''z'')}}, जटिल तल के एक आयताकार क्षेत्र में। यह [[डोमेन रंग]] विधि का उपयोग करके उत्पन्न होता है।]]गणित में, ट्राइगामा फ़ंक्शन, जिसे {{math|''ψ''<sub>1</sub>(''z'')}} या {{math|''ψ''<sup>(1)</sup>(''z'')}} कहा जाता है, बहुगामा फ़ंक्शनों में से दूसरा है, और इसे इसके द्वारा परिभाषित किया गया है।
[[File:Psi1.png|right|thumb|300px|त्रिगामा फ़ंक्शन का रंग प्रतिनिधित्व, {{math|''ψ''<sub>1</sub>(''z'')}}, जटिल तल के एक आयताकार क्षेत्र में। यह [[डोमेन रंग]] विधि का उपयोग करके उत्पन्न होता है।]]गणित में, त्रिगामा फलन, जिसे {{math|''ψ''<sub>1</sub>(''z'')}} या {{math|''ψ''<sup>(1)</sup>(''z'')}} कहा जाता है, बहुगामा फ़ंक्शनों में से दूसरा है, और इसे इसके द्वारा परिभाषित किया गया है।


: <math>\psi_1(z) = \frac{d^2}{dz^2} \ln\Gamma(z)</math>.
: <math>\psi_1(z) = \frac{d^2}{dz^2} \ln\Gamma(z)</math>.
Line 19: Line 19:
==गणना==
==गणना==


उपरोक्त दिए गए विकल्पों के विकल्प के रूप में एक [[दोहरा अभिन्न]] प्रतिनिधित्व, श्रृंखला प्रतिनिधित्व से प्राप्त किया जा सकता है:
उपरोक्त दिए गए विकल्पों के विकल्प के रूप में [[दोहरा अभिन्न]] प्रतिनिधित्व, श्रृंखला प्रतिनिधित्व से प्राप्त किया जा सकता है:


: <math> \psi_1(z) = \int_0^1\!\!\int_0^x\frac{x^{z-1}}{y(1 - x)}\,dy\,dx</math>
: <math> \psi_1(z) = \int_0^1\!\!\int_0^x\frac{x^{z-1}}{y(1 - x)}\,dy\,dx</math>
Line 46: Line 46:
\psi_1\left(n+\frac12\right)=\frac{\pi^2}{2}-4\sum_{k=1}^n\frac{1}{(2k-1)^2}.
\psi_1\left(n+\frac12\right)=\frac{\pi^2}{2}-4\sum_{k=1}^n\frac{1}{(2k-1)^2}.
</math>
</math>
इसके अतिरिक्त, ट्राइगामा फ़ंक्शन में निम्नलिखित विशेष मान हैं:
इसके अतिरिक्त, त्रिगामा फलन में निम्नलिखित विशेष मान हैं:


: <math>\begin{align}
: <math>\begin{align}
Line 57: Line 57:
जहाँ {{mvar|G}} कैटलन के स्थिरांक का प्रतिनिधित्व करता है।
जहाँ {{mvar|G}} कैटलन के स्थिरांक का प्रतिनिधित्व करता है।


{{math|''ψ''<sub>1</sub>}} के वास्तविक अक्ष पर कोई मूल नहीं हैं, लेकिन {{math|Re ''z'' < 0}} के लिए मूल {{math|''z<sub>n</sub>'', {{overline|''z<sub>n</sub>''}}}} के अनंत रूप से कई जोड़े मौजूद हैं। मूल का ऐसा प्रत्येक युग्म संक्षिप रूप से {{math|Re ''z<sub>n</sub>'' {{=}} −''n'' + {{sfrac|1|2}}}} के समीप पहुंचता है और उनका काल्पनिक भाग {{mvar|n}} के साथ धीरे-धीरे लघुगणकीय रूप से बढ़ता है। उदाहरण के लिए, {{math|''z''<sub>1</sub> {{=}} −0.4121345... + 0.5978119...''i''}} और {{math|''z''<sub>2</sub> {{=}} −1.4455692... + 0.6992608...''i''}} के साथ पहले दो मूल {{math|Im(''z'') > 0}} हैं।
{{math|''ψ''<sub>1</sub>}} के वास्तविक अक्ष पर कोई मूल नहीं हैं, लेकिन {{math|Re ''z'' < 0}} के लिए मूल {{math|''z<sub>n</sub>'', {{overline|''z<sub>n</sub>''}}}} के अनंत रूप से कई जोड़े उपस्थित हैं। मूल का ऐसा प्रत्येक युग्म संक्षिप रूप से {{math|Re ''z<sub>n</sub>'' {{=}} −''n'' + {{sfrac|1|2}}}} के समीप पहुंचता है और उनका काल्पनिक भाग {{mvar|n}} के साथ धीरे-धीरे लघुगणकीय रूप से बढ़ता है। उदाहरण के लिए, {{math|''z''<sub>1</sub> {{=}} −0.4121345... + 0.5978119...''i''}} और {{math|''z''<sub>2</sub> {{=}} −1.4455692... + 0.6992608...''i''}} के साथ पहले दो मूल {{math|Im(''z'') > 0}} हैं।


===क्लॉसन फ़ंक्शन से संबंध===
===क्लॉसन फ़ंक्शन से संबंध===


तर्कसंगत तर्कों पर डिगामा फ़ंक्शन को डिगामा प्रमेय द्वारा त्रिकोणमितीय फ़ंक्शन और लघुगणक के संदर्भ में व्यक्त किया जा सकता है। एक समान परिणाम ट्राइगामा फ़ंक्शन के लिए होता है लेकिन गोलाकार फ़ंक्शन को क्लॉज़ेन के फ़ंक्शन द्वारा प्रतिस्थापित किया जाता है। अर्थात,<ref>{{Cite book|title=बहु लघुगणक के संरचनात्मक गुण|editor-last=Lewin|editor-first=L. |publisher=American Mathematical Society|year=1991|isbn=978-0821816349}}</ref>
तर्कसंगत तर्कों पर डिगामा फ़ंक्शन को डिगामा प्रमेय द्वारा त्रिकोणमितीय फ़ंक्शन और लघुगणक के संदर्भ में व्यक्त किया जा सकता है। एक समान परिणाम त्रिगामा फलन के लिए होता है लेकिन गोलाकार फ़ंक्शन को क्लॉज़ेन के फ़ंक्शन द्वारा प्रतिस्थापित किया जाता है। अर्थात,<ref>{{Cite book|title=बहु लघुगणक के संरचनात्मक गुण|editor-last=Lewin|editor-first=L. |publisher=American Mathematical Society|year=1991|isbn=978-0821816349}}</ref>
:<math>
:<math>
\psi_1\left(\frac{p}{q}\right)=\frac{\pi^2}{2\sin^2(\pi p/q)}+2q\sum_{m=1}^{(q-1)/2}\sin\left(\frac{2\pi mp}{q}\right)\textrm{Cl}_2\left(\frac{2\pi m}{q}\right).
\psi_1\left(\frac{p}{q}\right)=\frac{\pi^2}{2\sin^2(\pi p/q)}+2q\sum_{m=1}^{(q-1)/2}\sin\left(\frac{2\pi mp}{q}\right)\textrm{Cl}_2\left(\frac{2\pi m}{q}\right).
Line 67: Line 67:


===गणना और सन्निकटन===
===गणना और सन्निकटन===
ट्राइगामा फ़ंक्शन का अनुमान लगाने का एक आसान तरीका डिगामा फ़ंक्शन के स्पर्शोन्मुख विस्तार का व्युत्पन्न लेना है।
त्रिगामा फलन का अनुमान लगाने का एक आसान तरीका डिगामा फ़ंक्शन के स्पर्शोन्मुख विस्तार का व्युत्पन्न लेना है।


:<math> \psi_1(x) \approx \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} + \frac{5}{66x^{11}} - \frac{691}{2730x^{13}} + \frac{7}{6x^{15}}</math>
:<math> \psi_1(x) \approx \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3} - \frac{1}{30x^5} + \frac{1}{42x^7} - \frac{1}{30x^9} + \frac{5}{66x^{11}} - \frac{691}{2730x^{13}} + \frac{7}{6x^{15}}</math>

Revision as of 09:35, 12 July 2023

त्रिगामा फ़ंक्शन का रंग प्रतिनिधित्व, ψ1(z), जटिल तल के एक आयताकार क्षेत्र में। यह डोमेन रंग विधि का उपयोग करके उत्पन्न होता है।

गणित में, त्रिगामा फलन, जिसे ψ1(z) या ψ(1)(z) कहा जाता है, बहुगामा फ़ंक्शनों में से दूसरा है, और इसे इसके द्वारा परिभाषित किया गया है।

.

इस परिभाषा से यह निष्कर्ष निकलता है कि

जहां ψ(z) डिगामा फ़ंक्शन है। इसे शृंखला के योग के रूप में भी परिभाषित किया जा सकता है।

इसे हर्विट्ज़ ज़ेटा फ़ंक्शन का एक विशेष स्तिथि बना दिया गया है।

ध्यान दें कि अंतिम दो सूत्र तब मान्य होते हैं जब 1 − z एक प्राकृतिक संख्या नहीं होती है।

गणना

उपरोक्त दिए गए विकल्पों के विकल्प के रूप में दोहरा अभिन्न प्रतिनिधित्व, श्रृंखला प्रतिनिधित्व से प्राप्त किया जा सकता है:

किसी ज्यामितीय श्रृंखला के योग के लिए सूत्र का उपयोग करना। y गुणनफल पर एकीकरण:

लॉरेंट श्रृंखला के रूप में एक असममित विस्तार है

यदि हमने B1 = 1/2 चुना है, अर्थात दूसरे प्रकार की बर्नौली संख्या हैं।

पुनरावृत्ति एवं परावर्तन सूत्र

त्रिगामा फलन पुनरावृत्ति संबंध को संतुष्ट करता है

और परावर्तन सूत्र

जो संक्षिप्त रूप में z =1/2 के लिए मान देता है।

विशेष मान

धनात्मक आधे पूर्णांक मानों पर हमारे पास वह है

इसके अतिरिक्त, त्रिगामा फलन में निम्नलिखित विशेष मान हैं:

जहाँ G कैटलन के स्थिरांक का प्रतिनिधित्व करता है।

ψ1 के वास्तविक अक्ष पर कोई मूल नहीं हैं, लेकिन Re z < 0 के लिए मूल zn, zn के अनंत रूप से कई जोड़े उपस्थित हैं। मूल का ऐसा प्रत्येक युग्म संक्षिप रूप से Re zn = −n + 1/2 के समीप पहुंचता है और उनका काल्पनिक भाग n के साथ धीरे-धीरे लघुगणकीय रूप से बढ़ता है। उदाहरण के लिए, z1 = −0.4121345... + 0.5978119...i और z2 = −1.4455692... + 0.6992608...i के साथ पहले दो मूल Im(z) > 0 हैं।

क्लॉसन फ़ंक्शन से संबंध

तर्कसंगत तर्कों पर डिगामा फ़ंक्शन को डिगामा प्रमेय द्वारा त्रिकोणमितीय फ़ंक्शन और लघुगणक के संदर्भ में व्यक्त किया जा सकता है। एक समान परिणाम त्रिगामा फलन के लिए होता है लेकिन गोलाकार फ़ंक्शन को क्लॉज़ेन के फ़ंक्शन द्वारा प्रतिस्थापित किया जाता है। अर्थात,[1]

गणना और सन्निकटन

त्रिगामा फलन का अनुमान लगाने का एक आसान तरीका डिगामा फ़ंक्शन के स्पर्शोन्मुख विस्तार का व्युत्पन्न लेना है।

उपस्थिति

त्रिगामा फलन इस योग सूत्र में प्रत्यक्ष होता है:[2]

यह भी देखें

  • गामा फलन
  • दिगम्मा फलन
  • बहुपद फलन
  • कैटलन स्थिरांक

टिप्पणियाँ

  1. Lewin, L., ed. (1991). बहु लघुगणक के संरचनात्मक गुण. American Mathematical Society. ISBN 978-0821816349.
  2. Mező, István (2013). "Some infinite sums arising from the Weierstrass Product Theorem". Applied Mathematics and Computation. 219 (18): 9838–9846. doi:10.1016/j.amc.2013.03.122.

संदर्भ