कोहोमोटोपी समुच्चय: Difference between revisions

From Vigyanwiki
No edit summary
(No difference)

Revision as of 12:45, 14 July 2023

गणित में, विशेष रूप से बीजगणितीय संस्थिति में, सह-समरूप समुच्चय अंकित संस्थिति समष्टि की श्रेणी (गणित) और आधारबिंदु-संरक्षित निरंतर फलन (संस्थिति) मानचित्रों से लेकर समुच्चय (गणित) और फलन (गणित) की श्रेणी तक विशेष श्रेणी सिद्धांत हैं। वे समरूप समूह के लिए द्वैत (गणित) हैं, लेकिन उनका अध्ययन कम किया गया हैं।

अवलोकन

अंकित संस्थिति स्थान X के p-वें सह-समरूप समुच्चय को परिभाषित किया गया है

निरंतर मापन के अंकित समरूप वर्गों का समुच्चय p-गोला के लिए होता हैं। p = 1 के लिए इस समुच्चय में एबेलियन समूह संरचना है, और, इसके अतिरिक्त सीडब्ल्यू-समिश्र है, पहले सह-समरूपता समूह के लिए समूह समरूप है, चुकी वृत्त ईलेनबर्ग-मैकलेन प्रकार का स्थान है। वास्तव में, यह हेंज हॉफ का प्रमेय है कि यदि तब अधिकतम p आयाम का सीडब्ल्यू-समिश्र है तब p-वें सह समरूप समूह द्विभाज्य है।

समुच्चय प्राकृतिक समूह (गणित) संरचना भी है यदि स्थगन है, जैसे कि गोला के लिए होता हैं।

यदि X, सीडब्ल्यू-समिश्र के समतुल्य समरूप नहीं है, तो हो सकता है कि के समरूप नहीं होता हैं। वारसॉ वृत्त द्वारा प्रति-उदाहरण दिया गया है, जिसका पहला सह समरूप समूह समाप्त हो जाता है, लेकिन मानचित्र को स्वीकार करता है जो स्थिर मानचित्र के लिए समरूपी नहीं है।[1]


गुण

सह समरूप समुच्चय के बारे में कुछ आधारभूत तथ्य, कुछ दूसरों की तुलना में अधिक स्पष्ट:

  • सभी p और q के लिए होता हैं।
  • और के लिए, समूह के बराबर होता हैं। (इस परिणाम को सिद्ध करने के लिए, लेव पोंट्रीगिन ने फ़्रेमयुक्त सह-बॉर्डिज्म की अवधारणा विकसित की थी।)
  • यदि के पास सभी x के लिए हैं, फिर , और यदि f और g होते हैं तो समरूपता सहज होती हैं।
  • के लिए विविध सहज संकुचित स्थान सुचारू फलन मानचित्रों के समरूप वर्गों के समुच्चय के लिए समरूप है; इस स्थिति में, प्रत्येक सतत मानचित्र को सहज मानचित्र द्वारा समान रूप से अनुमानित किया जा सकता है और कोई भी समरूप सुचारू मानचित्र सुचारू रूप से समरूप होता हैं।
  • यदि -तो फिर विविध हैं, तो के लिए होता हैं।
  • यदि -सीमा में विविध हैं, तो समुच्चय आंतरिक (टोपोलॉजी) के विहित p-फ़्रेमयुक्त सह विविध के सह बॉर्डिज़्म वर्गों के समुच्चय के साथ द्विभाजित में प्राकृतिक समरूपता है।
  • का स्थिर सह समरूप समूह सह सिमित है।
जो एक एबेलियन समूह है।

संदर्भ

  1. Polish Circle. Retrieved July 17, 2014.